0000000000054105

AUTHOR

Guillermo Esteban-pretel

Vitamin A deficiency disturbs collagen IV and laminin composition and decreases matrix metalloproteinase concentrations in rat lung. Partial reversibility by retinoic acid

Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet …

research product

Endocytosis in cultured neurons is altered by chronic alcohol exposure.

Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However, information on the effect of chronic alcohol exposure on this process in neurons is scarce. As an approach, we investigated the effect of alcohol exposure on the internalization of two widely used endocytic markers, albumin and transferrin, in developing hippocampal neurons in primary culture. The effect of this treatment on the levels of several r…

research product

Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture.

The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effec…

research product

Protein traffic is an intracellular target in alcohol toxicity

Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the d…

research product

Ethanol reduces zincosome formation in cultured astrocytes.

Aims Zinc is an ion that participates in basic cellular and tissular functions. Zinc deficiency is present in many physiological and health problems affecting most body organs, including the brain. Among the circumstances involved in zinc deficiency, ethanol consumption is probably one of the most frequent. A dietary zinc supplement has been proposed as possibly being an efficient method to palliate zinc deficiency. Astrocytes form part of the hematoencephalic barrier, and they are apparently implicated in the homeostasis of the neuronal medium. In this work, we analyze the effect of ethanol on extracellular zinc management by rat astrocytes in culture. Methods Intracellular levels of 'free…

research product

Polyphosphoinositide Metabolism and Golgi Complex Morphology in Hippocampal Neurons in Primary Culture is Altered by Chronic Ethanol Exposure

Aims : Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. Methods : Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The level…

research product

An experimental design for the controlled modulation of intracellular GSH levels in cultured hepatocytes

This work proposes a practical experimental approach that allows the rapid in situ generation of a wide range of intracellular GSH concentrations in the intact hepatocyte under highly reproducible conditions. The strategy involves the use of diethyl maleate, a thiol-reactive electrophile that causes rapid and extensive GSH depletion, as well as GSH monoethylester, a GSH analogue that is readily taken up by cells and deesterified intracellularly to render GSH. For both agents, we have analyzed (i) the minimal exposure time required to produce a maximal and dose-related effect on intracellular GSH without altering hepatocyte viability or subsequent survival in culture, and (ii) the relative s…

research product

Vitamin A deficiency alters the structure and collagen IV composition of rat renal basement membranes.

Retinoids can modulate the expression of extracellular matrix (ECM) proteins with variable results depending on other contributing factors. Because changes in these proteins may alter the composition and impair the function of specialized ECM structures such as basement membranes (BMs), we studied the effects of vitamin A deficiency on renal BMs during the growing period. Newborn male rats were fed a vitamin A-deficient (VAD) diet for 50 d. The ultrastructure of renal BMs was analyzed by electron microscopy. Total collagen IV, the different alpha(IV) chains, matrix degrading metalloproteinases (MMP), and tissue inhibitors of metalloproteinases (TIMP) were quantified by immunocytochemistry a…

research product

Vitamin A Deficiency and Alterations in the Extracellular Matrix

Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Reti…

research product

Vitamin A Deficiency Increases Protein Catabolism and Induces Urea Cycle Enzymes in Rats

Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantl…

research product

Vitamin A deficiency alters rat lung alveolar basement membrane: reversibility by retinoic acid.

Vitamin A is essential for lung development and pulmonary cell differentiation and its deficiency results in alterations of lung structure and function. Basement membranes (BMs) are also involved in those processes, and retinoic acid, the main biologically active form of vitamin A, influences the expression of extracellular matrix macromolecules. Therefore, we have analyzed the ultrastructure and collagen content of lung alveolar BM in growing rats deficient in vitamin A and the recovering effect of all-trans retinoic acid. Male weanling pups were fed a retinol-adequate or -deficient diet until they were 60 days old. A group of vitamin A-deficient pups were recovered by daily intraperitonea…

research product