Generalized bloch equations for optical interactions in confined geometries
By combining the field-susceptibility technique with the optical Bloch equations, a general formalism is developed for the investigation of molecular photophysical phenomena triggered by nanometer scale optical fields in the presence of complex environments. This formalism illustrate the influence of the illumination regime on the fluorescence signal emitted by a single molecule in a complex environment. In the saturated case, this signal is proportional to the optical local density of states, while it is proportional to the near-field intensity in the non-saturated case. (C) 2005 Elsevier B.V. All rights reserved.
Molecular quenching and relaxation in a plasmonic tunable system
Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green's dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.
Electrodynamics in complex systems
This paper discusses recent theoretical efforts to develop a general and flexible method for the calculation of the field distributions around and inside complex optical systems involving both dielectric and metallic materials. Starting from the usual light-matter coupling Hamiltonian, we derive a self-consistent equation for the optical field in arbitrary optical systems composed of N different subdomains. We show that an appropriate solving procedure based on the real-space discretization of each subdomain raises the present approach to the rank of an accurate predictive numerical scheme. In order to illustrate its applicability, we use this formalism to address challenging problems relat…
Dielectric versus topographic contrast in near-field microscopy
Using a fully vectorial three-dimensional numerical approach (generalized field propagator, based on Green's tensor technique), we investigate the near-field images produced by subwavelength objects buried in a dielectric surface. We study the influence of the object index, size, and depth on the near field. We emphasize the similarity between the near field spawned by an object buried in the surface (dielectric contrast) and that spawned by a protrusion on the surface (topographic contrast). We show that a buried object with a negative dielectric contrast (i.e., with a smaller index than its surrounding medium) produces a near-field image that is reversed from that of an object with a posi…
Physical interaction between tip and molecules in scanning force microscopy imaging of adsorbed C60 and fullerene tubules
After the discovery of C60, a large family of fullerene molecules was also identified. Among them, elongated fullerenes are formed by the tubular assembly of carbon atoms. The van der Waals bonds between fullerene molecules are due to the correlations between fluctuating charge densities inside the molecules. The interaction is then dominated by collective excitations which are sensitive to the shape of the molecules. Therefore, van der Waals attraction is expected to be modified when considering successively spherical C60, C70 and more elongated fullerenes (tubules). This paper presents self‐consistent computations of the van der Waals interaction between a (111) diamond probe tip and vari…