Predicting stiffness and strength of birch pulp:Polylactic acid composites
This paper studies failure of birch pulp–polylactic acid composites. Stiffness and strength are calculated using the theory of short fibre composites and the results are compared to experimental data. The results differed from the experimental values by 0–6%. With less aligned fibres the short fibre theory is not feasible. The performance of the 40 wt% birch pulp – polylactic acid composite is predicted with X-ray microtomography based finite element modelling, and the results are compared with experiments. Stiffness results differed from experiments by 1–17% . By adding into the models a third material phase representing the interface between the fibres and the matrix, the stress–strain c…
X-ray micro-tomography based FEM modelling of hygroexpansion in PLA composites reinforced with birch pulp fibres
This article presents a microscale modelling approach coupled with X-ray computed micro-tomography for the evaluation of material properties of polylactic acid (PLA) reinforced by birch pulp fibers under the effect of moisture. The results in terms of elastic moduli and hygroexpansion deformation were found in good agreement with the measurements taken at different levels of water uptake.