0000000000054677

AUTHOR

Adem Yildirim

PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation

Significance The photoreceptor outer segments are primary cilia, modified for phototransduction by incorporation of stacked opsin-loaded membrane disks that are continuously regenerated. This process is disrupted in several types of inherited retinal dystrophy, but the driving force remained unclear. We show that C2orf71/PCARE (photoreceptor cilium actin regulator), associated with inherited retinal dystrophy subtype RP54, efficiently recruits the Arp2/3 complex activator WASF3 to the cilium. This activates an actin dynamics-driven expansion of the ciliary tip, resembling membrane evagination in lamellipodia formation. Colocalization of this actin dynamics module to the base of the outer se…

research product

SANS (USH1G) Molecularly Links the Human Usher Syndrome Protein Network to the Intraflagellar Transport Module by Direct Binding to IFT-B Proteins.

The human Usher syndrome (USH) is a retinal ciliopathy, characterized by profound congenital deafness, variable vestibular dysfunction and pre-pubertal onset of retinitis pigmentosa. In the effected sensory cells, USH protein networks are assumed to function in ciliary transport processes. The USH1G protein SANS is a scaffold of the ciliary/periciliary USH protein network of photoreceptor cells. Moreover, SANS is associated with microtubules, the transport routes for protein delivery toward the cilium. To enlighten the role of SANS in ciliary transport processes, we aimed to identify transport related proteins associated with SANS. The intraflagellar transport (IFT) system is a conserved me…

research product

SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes

Abstract Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofact…

research product