0000000000054983
AUTHOR
Andreina Giustiniani
Effects of low-gamma tACS on primary motor cortex in implicit motor learning
Abstract In the primary motor cortex (M1), rhythmic activity in the gamma frequency band has been found during movement planning, onset and execution. Although the role of high-gamma oscillatory activity in M1 is well established, the contribution of low-gamma activity is still unexplored. In this study, transcranial alternating current stimulation (tACS) was used with the aim to specifically modulate low-gamma frequency band in M1, during an implicit motor learning task. A 40 Hz-tACS was applied over the left M1 while participants performed a serial reaction time task (SRTT) using their right hand. The task required the repetitive execution of sequential movements in response to sequences …
Brain oscillations: discovering their role in memory using Transcranial Alternating Current Stimulation
Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People’s Explosive Power: A Pilot Study
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects.Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco’s test; (5) s…
Functional Role of Cerebellar Gamma Frequency in Motor Sequences Learning: a tACS Study
Although the role of the cerebellum in motor sequences learning is widely established, the specific function of its gamma oscillatory activity still remains unclear. In the present study, gamma (50 Hz)—or delta (1 Hz)—transcranial alternating current stimulation (tACS) was applied to the right cerebellar cortex while participants performed an implicit serial reaction time task (SRTT) with their right hand. The task required the execution of motor sequences simultaneously with the presentation of a series of visual stimuli. The same sequence was repeated across multiple task blocks (from blocks 2 to 5 and from blocks 7 to 8), whereas in other blocks, new/pseudorandom sequences were reproduce…
Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer’s Disease
Background: The lack of effective pharmacological or behavioral interventions for memory impairments associated with Alzheimer’s disease (AD) emphasizes the need for the investigation of approaches based on neuromodulation. Objective: This study examined the effects of inhibitory repetitive transcranial magnetic stimulation (rTMS) of prefrontal cortex on recognition memory in AD patients. Methods: In a first experiment, 24 mild AD patients received sham and real 1Hz rTMS over the left and right dorsolateral prefrontal cortex (DLPFC), in different sessions, between encoding and retrieval phases of a non-verbal recognition memory task. In a second experiment, another group of 14 AD patients u…
Investigating prismatic adaptation effects in handgrip strength and in plantar pressure in healthy subjects.
Abstract Background Prismatic Adaptation (PA) is a visuomotor procedure inducing a shift of the visual field that has been shown to modulate activation of a number of brain areas, in posterior (i.e. parietal cortex) and anterior regions (i.e. frontal cortex). This neuromodulation could be useful to study neural mechanisms associated with either postural measures such as the distribution of plantar pressure or to the generation of muscle strength. Indeed, plantar pressure distribution is associated to activation of high-level cognitive mechanisms taking place within the posterior regions of the brain dorsal stream, especially of the right hemisphere. Conversely, hand force mostly rely on sen…