0000000000055643

AUTHOR

Simone Di Micco

0000-0002-4688-1080

Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition.

We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC…

research product

Overcome Chemoresistance: Biophysical and Structural Analysis of Synthetic FHIT-Derived Peptides.

The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging from position 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind …

research product

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

research product

Two New Flavonoids fromBonannia graeca: a DFT-NMR Combined Approach in Solving Structures

Two new cyclized C-geranylated flavonoids, the dihydroflavonol bonanniol C (4a) and the flavanone bonannione B (6a), were isolated as minor compounds from the aerial parts of Bonannia graeca (Umbelliferae). Their structures were elucidated by a combined approach of extensive spectroscopic means and quantum mechanical methods. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

research product

Structural basis for the potential antitumour activity of DNA-interacting benzo[kl]xanthene lignans

The biological properties and possible pharmacological applications of benzo[kl]xanthene lignans, rare among natural products and synthetic compounds, are almost unexplored. In the present contribution, the possible interaction of six synthetic benzo[kl]xanthene lignans and the natural metabolite rufescidride with DNA has been investigated through a combined STD-NMR and molecular docking approach, paralleled by in vitro biological assays on their antiproliferative activity towards two different cancer cell lines: SW 480 and HepG2. Our data suggest that the benzo[kl]xanthene lignans are suitable lead compounds for the design of DNA selective ligands with potential antitumour properties.

research product