0000000000055784

AUTHOR

Olivier Mathon

showing 3 related works from this author

Interplay between local structure, vibrational and electronic properties on CuO under pressure

2020

The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4 square planar units and two elongated apical Cu-O bonds. The CuO4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye-Waller, s2) of the elong…

X-ray absorption spectroscopyMaterials scienceAbsorption spectroscopyCondensed matter physicsExtended X-ray absorption fine structureBand gapGeneral Physics and Astronomy02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesIonK-edgeAb initio quantum chemistry methods0103 physical sciencesPhysical and Theoretical Chemistry010306 general physics0210 nano-technology
researchProduct

Jahn-Teller distortion aroundFe4+inSr(FexTi1−x)O3−δfrom x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy

2007

$\mathrm{Sr}({\mathrm{Fe}}_{x}{\mathrm{Ti}}_{1\ensuremath{-}x}){\mathrm{O}}_{3\ensuremath{-}\ensuremath{\delta}}$ perovskites (strontium titanate ferrite solid solution) with well-defined oxygen stoichiometry have been studied as a function of iron concentration by x-ray diffraction, Fe and Ti $K$-edge x-ray absorption spectroscopy (XAS), and vibrational (Raman and infrared) spectroscopy. In reduced $\mathrm{Sr}({\mathrm{Fe}}_{x}{\mathrm{Ti}}_{1\ensuremath{-}x}){\mathrm{O}}_{3\ensuremath{-}x∕2}$ samples, the analysis of the Fe $K$-edge extended x-ray absorption fine structure indicates the expected presence of oxygen vacancies ${\mathrm{V}}_{\mathrm{O}}^{∙∙}$ in the first coordination shell…

X-ray spectroscopyX-ray absorption spectroscopyCrystallographyMaterials scienceAbsorption spectroscopyJahn–Teller effectX-ray crystallographyCondensed Matter PhysicsSpectroscopyElectronic Optical and Magnetic MaterialsSolid solutionX-ray absorption fine structurePhysical Review B
researchProduct

Local electronic structure rearrangements and strong anharmonicity in YH3 under pressures up to 180 GPa

2021

The authors acknowledge the ESRF program committee (Grenoble, France) for the opportunity to perform XAFS and XRD measurements. We are grateful to Prof. Dr Marek Tkacz from the Institute of Physical Chemistry, PAS Kasprzaka 44/52, 01-224 Warsaw, Poland, for high quality YH3 samples and to Dr. José A. Flores-Livas for a fruitful discussion. A.P.M. and A.A.I. acknowledge the Russian Foundation for the Basic Research (grant No 18-02-40001_mega) for financial support. J.P., A.K., and I.P. would like to thank the support of the Latvian Council of Science project No. lzp-2018/2-0353. ISSP UL acknowledge the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-20l 6-2017-TeamingPh…

Materials scienceHydrogenScienceGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Science0103 physical sciencesAtomPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]Physics::Atomic PhysicsPhysics::Chemical Physics010306 general physicsMultidisciplinaryExtended X-ray absorption fine structureHydrideQAnharmonicityGeneral ChemistryYttrium021001 nanoscience & nanotechnologyXANESX-ray absorption fine structurechemistryChemical physics0210 nano-technologyNature Communications
researchProduct