0000000000055976

AUTHOR

Mujahid Abbas

0000-0001-5528-1207

showing 12 related works from this author

Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation

2014

Abstract We establish some fixed point theorems by introducing two new classes of contractive mappings in Menger PM-spaces. First, we prove our results for an α - ψ -type contractive mapping and then for a generalized β -type contractive mapping. Some examples and an application to Volterra type integral equation are given to support the obtained results.

Pure mathematicsApplied MathematicsMathematical analysisFixed-point theoremFixed pointType (model theory)Menger PM-spaceVolterra integral equationVolterra integral equationIntegral equationContinuous t-normComputational Mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsMathematics
researchProduct

Fixed fuzzy points of fuzzy mappings in Hausdorff fuzzy metric spaces with application

2015

Recently, Phiangsungnoen et al. [J. Inequal. Appl. 2014:201 (2014)] studied fuzzy mappings in the framework of Hausdorff fuzzy metric spaces. Following this direction of research, we establish the existence of fixed fuzzy points of fuzzy mappings. An example is given to support the result proved herein; we also present a coincidence and common fuzzy point result. Finally, as an application of our results, we investigate the existence of solution for some recurrence relations associated to the analysis of quicksort algorithms.

Settore MAT/05 - Analisi MatematicaFuzzy metric space Fuzzy mapping Fixed fuzzy point Quicksort algorithm
researchProduct

Common Fixed points for multivalued generalized contractions on partial metric spaces

2013

We establish some common fixed point results for multivalued mappings satisfying generalized contractive conditions on a complete partial metric space. The presented theorems extend some known results to partial metric spaces. We motivate our results by some given examples and an application for finding the solution of a functional equation arising in dynamic programming.

Discrete mathematicsAlgebra and Number TheoryApplied MathematicsInjective metric spaceFubini–Study metricIntrinsic metricConvex metric spaceComputational MathematicsMetric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Geometry and TopologyCommon fixed point partial metric space partial Hausdorff metric weak contraction.Metric differentialAnalysisFisher information metricMathematics
researchProduct

Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation

2016

Abstract In this paper, we introduce new concepts of α-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from α-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.

Pure mathematicsClass (set theory)General Mathematics010102 general mathematicsMathematical analysisGeneral Physics and AstronomyFixed pointType (model theory)Fixed point01 natural sciencesComplete metric space010101 applied mathematicsNonlinear fractional differential equationsNonlinear fractional differential equationPeriodic pointsSettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsContraction principleMathematics
researchProduct

Fuzzy fixed points of generalized F2-geraghty type fuzzy mappings and complementary results

2016

The aim of this paper is to introduce generalized F2-Geraghty type fuzzy mappings on a metric space for establishing the existence of fuzzy fixed points of such mappings. As an application of our result, we obtain the existence of common fuzzy fixed point for a generalized F2-Geraghty type fuzzy hybrid pair. These results unify, generalize and complement various known comparable results in the literature. An example and an application to theoretical computer science are presented to support the theory proved herein. Also, to suggest further research on fuzzy mappings, a Feng–Liu type theorem is proved.

Fuzzy mappingSorting algorithmFuzzy classificationMathematics::General MathematicsFuzzy mappingFuzzy fixed pointlcsh:Analysis02 engineering and technologyType (model theory)01 natural sciencesFuzzy logicfuzzy fixed point fuzzy mapping sorting algorithmSettore MAT/05 - Analisi Matematica0202 electrical engineering electronic engineering information engineeringFuzzy number0101 mathematicsMathematicsDiscrete mathematicsSorting algorithmApplied Mathematicslcsh:QA299.6-433010101 applied mathematicsFuzzy mathematicsFuzzy set operations020201 artificial intelligence & image processingAnalysis
researchProduct

Recent Developments on Fixed Point Theory in Function Spaces and Applications to Control and Optimization Problems

2015

1Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud, Raipur, Chhattisgarh 492101, India 2Department of Mathematics and AppliedMathematics, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa 3Departement de Mathematiques et de Statistique, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7 4Department of Mathematics and Informatics, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy

Mathematical optimizationOptimization problemArticle SubjectFunction spacelcsh:MathematicsInformaticsControl (management)Fixed-point theoremlcsh:QA1-939Mathematical economicsAnalysisMathematicsJournal of Function Spaces
researchProduct

Invariant approximation results in cone metric spaces

2011

‎Some sufficient conditions for the existence of fixed point of mappings‎ ‎satisfying generalized weak contractive conditions is obtained‎. ‎A fixed‎ ‎point theorem for nonexpansive mappings is also obtained‎. ‎As an application‎, ‎some invariant approximation results are derived in cone metric spaces‎.

Control and OptimizationAlgebra and Number TheoryInjective metric spaceTangent coneMathematical analysis‎non normal cone‎54C60‎54H25‎‎orbitally continuous‎cone metric spacesIntrinsic metricConvex metric spaceFixed pointsMetric space‎46B40Dual cone and polar coneSettore MAT/05 - Analisi MatematicaMetric map‎invariant‎ ‎approximationInvariant (mathematics)Fixed points orbitally continuous invariant approximation cone metric spaces non normal cone.47H10AnalysisMathematics
researchProduct

Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces

2012

Abstract In this paper, we introduce the concept of a partial Hausdorff metric. We initiate study of fixed point theory for multi-valued mappings on partial metric space using the partial Hausdorff metric and prove an analogous to the well-known Nadlerʼs fixed point theorem. Moreover, we give a homotopy result as application of our main result.

Discrete mathematicsNadlerʼs fixed point theoremPure mathematicsInjective metric spacePartial Hausdorff metricMulti-valued mappingsNadler’s fixed point theoremMulti-valued mappingConvex metric spaceIntrinsic metricMetric spaceHausdorff distanceSettore MAT/05 - Analisi MatematicaHausdorff dimensionHausdorff measureGeometry and TopologyMetric differentialMathematics
researchProduct

Common fixed point results for three maps in G-metric spaces

2011

In this paper, we use the setting of generalized metric spaces to obtain common fixed point results for three maps. These results generalize several well known comparable results in the literature.

Pure mathematicsGeneral MathematicsInjective metric spaceProduct metricTopologyFixed-point propertyConvex metric spaceIntrinsic metricMetric spaceSchauder fixed point theoremSettore MAT/05 - Analisi MatematicaMetric mapCommon fixed point generalized metric spaceMathematicsFilomat
researchProduct

A simulation function approach for best proximity point and variational inequality problems

2017

We study sufficient conditions for existence of solutions to the global optimization problem min(x is an element of A) d(x, fx), where A, B are nonempty subsets of a metric space (X, d) and f : A -> B belongs to the class of proximal simulative contraction mappings. Our results unify, improve and generalize various comparable results in the existing literature on this topic. As an application of the obtained theorems, we give some solvability theorems of a variational inequality problem.

best proximity point fixed point simulation functions variational inequality problemsNumerical AnalysisControl and OptimizationAlgebra and Number Theory010102 general mathematicsMathematical analysisFunction (mathematics)01 natural sciences010101 applied mathematicsSettore MAT/05 - Analisi MatematicaVariational inequalityProximity problemsDiscrete Mathematics and CombinatoricsApplied mathematicsPoint (geometry)0101 mathematicsAnalysisMathematicsMiskolc Mathematical Notes
researchProduct

Some coincidence and periodic points results in a metric space endowed with a graph and applications

2015

The purpose of this paper is to obtain some coincidence and periodic points results for generalized $F$-type contractions in a metric space endowed with a graph. Some examples are given to illustrate the new theory. Then, we apply our results to establishing the existence of solution for a certain type of nonlinear integral equation.

Pure mathematicsAlgebra and Number TheoryPeriodic sequencePeriodic pointCoincidence point nonlinear integral equation periodic point.Type (model theory)TopologyNonlinear integral equationnonlinear integral equationCoincidenceCoincidence pointMetric spaceperiodic point54H25Settore MAT/05 - Analisi MatematicaGraph (abstract data type)05C40Coincidence pointAnalysis47H10Mathematics
researchProduct

A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces

2013

Abstract In this paper, we obtain a Suzuki type fixed point theorem for a generalized multivalued mapping on a partial Hausdorff metric space. As a consequence of the presented results, we discuss the existence and uniqueness of the bounded solution of a functional equation arising in dynamic programming.

Discrete mathematicsInjective metric spacepartial metric spaceFixed-point theoremFixed-point propertyCommon fixed pointSchauder fixed point theoremHausdorff distanceSettore MAT/05 - Analisi Matematicamulti-valued mappingContraction mappingGeometry and TopologyBrouwer fixed-point theoremKakutani fixed-point theoremMathematicsTopology and its Applications
researchProduct