0000000000056066

AUTHOR

Alessandro Papitto

showing 68 related works from this author

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

2018

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

Angular momentumastro-ph.SRAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityPulsars: individual: SAX J1808.4Settore FIS/05 - Astronomia E AstrofisicaPulsarBinaries: closeMass transfer0103 physical sciencesBinaries: generalStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)3658 -X-rays: binarieHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

Order in the chaos? The strange case of accreting millisecond pulsars

2007

We review recent results from the X-ray timing of accreting millisecond pulsars in Low Mass X-ray Binaries. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also find that the phase delays behavior as a function of time in these sources is sometimes quite complex and difficult to interpret, since phase shifts, most probably …

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-ray binaryStatic timing analysisAstronomyFOS: Physical sciencesAstrophysicsAstrophysicsCelestial mechanicsAccretion (astrophysics)Interstellar mediumNeutron starPulsarMillisecond pulsarAstrophysics::Earth and Planetary AstrophysicsAIP Conference Proceedings
researchProduct

Spin down of an Accreting Millisecond Pulsar, the case of XTE J1814‐338

2007

We report about a timing analysis performed on the data gathered by RXTE of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst. The first full orbital solution of this binary system is given. Moreover the evolution of the phase of the pulsed emission reveals that the rotating compact object is spinning down at a rate ν˙ = (-6.7 +/- 0.7) × 10-14 Hz/s, while accreting. This behavior is considered as a result of the braking effect due to the interaction between the magnetosphere and the inner parts of the accretion disc, in the case of an accretion rate low enough to allow the expansion of the magnetospheric radius to the corotation limit. In this context we derive an esti…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyMagnetosphereContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsCompact starPulsars X-ray binaries Accretion and accretion disksSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

Spin up and phase fluctuations in the timing of the accreting millisecond pulsar XTE J1807-294

2007

We performed a timing analysis of the 2003 outburst of the accreting X-ray millisecond pulsar XTE J1807-294 observed by RXTE. Using recently refined orbital parameters we report for the first time a precise estimate of the spin frequency and of the spin frequency derivative. The phase delays of the pulse profile show a strong erratic behavior superposed to what appears as a global spin-up trend. The erratic behavior of the pulse phases is strongly related to rapid variations of the light curve, making it very difficult to fit these phase delays with a simple law. As in previous cases, we have therefore analyzed separately the phase delays of the first harmonic and of the second harmonic of …

Orbital elementsPhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)Static timing analysisFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsLight curveAstrophysicsPulsars: General Stars: Pulsars: Individual: Alphanumeric: XTE J1807-294 Stars: Magnetic Fields Stars: Neutron X-Rays: Binaries [Stars]Pulse (physics)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarHarmonicStars: Pulsars: General Stars: Pulsars: Individual: Alphanumeric: XTE J1807-294 Stars: Magnetic Fields Stars: Neutron X-Rays: BinariesSpin-½
researchProduct

The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit

2011

We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveSpectral lineNeutron starOrbitSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarOrbital motionAstrophysics::Solar and Stellar AstrophysicsRoche lobeAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaneutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binaries [stars]stars: neutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binariesNoise (radio)
researchProduct

A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705−44: looking at the inner accretion disc with X-ray spectroscopy

2009

Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; th…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sightAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusCompact starline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-ray: binaries X-rays: generalNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radiusAstrophysics::Galaxy AstrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

2018

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

High Energy Astrophysical Phenomena (astro-ph.HE)line: formation line: identification stars: individual: SAX J1808.4-3658 stars: magnetic fields stars: neutron X-rays: binaries X-rays: generalPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRadial velocityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarInclination angle0103 physical sciencesSpectral analysisAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

The reflection component in NS LMXBs

2014

Thanks to the good spectral resolution and large effective area of the EPIC/PN instrument on board of XMM-Newton, we have at hand a large number of observations of accreting low-mass X-ray binaries, that allow for the fist time a comprehensive view on the characteristics of the reflection component at different accretion regimes and to probe the effects of a magnetosphere on its formation. We focus here on a comparative analysis of the reflection component from a series of spectroscopic studies on selected sources: 4U 1705-44, observed both in the soft and hard state, the pulsating ms pulsars SAX J1808.4-3658 and IGR J17511-3057, and the intermittent pulsar HETE J1900-2455. Although the sou…

XMM-NEWTONPhysicsSPECTRUM4U 1705-44Astrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999MagnetosphereAstronomyAstrophysicsEPICOn boardACCRETING MILLISECOND PULSAR; XMM-NEWTON; 4U 1705-44; SPECTRUM; RXTESettore FIS/05 - Astronomia E AstrofisicaPulsarRXTEACCRETING MILLISECOND PULSARSpectral resolutionEPJ Web of Conferences
researchProduct

Orbital evolution of an accreting millisecond pulsar: witnessing the banquet of a hidden black widow?

2008

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

Physicseducation.field_of_studyAngular momentumGravitational waveAstrophysics::High Energy Astrophysical PhenomenaPopulationAstronomy and AstrophysicsAstrophysicsOrbital periodAccretion (astrophysics)Neutron starPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicseducationMonthly Notices of the Royal Astronomical Society
researchProduct

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

2012

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact star01 natural sciencesSpectral lineidentification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binaries [line]GravitationSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsline: identification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binariesAstronomyAstronomy and AstrophysicsRadiusAccretion (astrophysics)Neutron starAmplitudeSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480−2446 (Terzan 5)

2011

The newly discovered 11-Hz accreting pulsar, IGR J17480−2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenachemistry.chemical_elementFluxAstronomy and AstrophysicsAstrophysics01 natural sciencesNeutron starchemistryPulsarSpace and Planetary ScienceGlobular cluster0103 physical sciencesPolar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHeliumX-ray pulsarMonthly Notices of the Royal Astronomical Society
researchProduct

GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

2021

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivi…

PhysicsCubeSatsGamma-Ray BurstsPhotonGravitational Wave counterparts010308 nuclear & particles physicsGravitational waveSpace timeQuantum gravityAstronomyTriangulation (social science)01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaAll-sky monitorObservatoryX-rays0103 physical sciencesQuantum gravityNano-satellitesTemporal triangulationGamma-ray burstQuantum foam010303 astronomy & astrophysics
researchProduct

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time: A swarm of nano/micro/small-satellites to probe the ultimate str…

2021

AbstractGrailQuest(Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution (≤ 100 nanoseconds) each with effective area$\sim 100 \text {cm}^{2}$∼100cm2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, …

PhysicsGamma-Ray Burstsγ-ray sourceAll-sky monitor; Constellation of satellites; Gamma-Ray Bursts; Quantum gravity; γ-ray sourcesPhotonbusiness.industryGravitational waveHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaConstellation of satellitesQuantum gravityAstronomy and AstrophysicsGamma-ray astronomyGamma-Ray Burstγ-ray sourcesOpticsConstellation of satelliteAll-sky monitorSpace and Planetary ScienceObservatoryTemporal resolutionSatellitebusinessGeocentric orbit
researchProduct

Timing of the Accreting Millisecond Pulsar XTE J1814-338

2006

We present a precise timing analysis of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst, observed by RXTE. A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period, P_orb=15388.7229(2)s, and of the projected semimajor axis, a sini/c= 390.633(9) lt-ms. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency (nu=314.35610879(1) Hz) and the first estimate of the spin frequency derivative of this source while accreting (nu^dot=(-6.7 +/- 0.7) 1…

Physicsstars: magnetic fields stars: neutron pulsars: general pulsars: individual: XTE J1814-338 X-rays: binariesAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesMagnetosphereAstronomy and AstrophysicsContext (language use)AstrophysicsCompact starOrbital periodAstrophysicssymbols.namesakeSpace and Planetary ScienceMillisecond pulsarsymbolsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsDoppler effectSpin-½
researchProduct

The HERMES-Technologic and Scientific Pathfinder

2020

HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites Technologic and Scientific Pathfinder) is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors, characterized by a large energy band and excellent temporal resolution, and thus optimized for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their positions. The projects are funded by the Italian Ministry of University and Research and by the Italian Space Agency, and by the European Union Horizon 2020 Research and Innovation Program under Grant Agreement No. 821896. HERMES-TP/S…

CubeSatsmedia_common.quotation_subjectCubeSats; Gamma Ray Bursts; Nano-satellites; X-raysFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyAstrophysics - Instrumentation and MethodsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesX-raysmedia_common.cataloged_instanceEuropean unionAerospace engineeringNano-satellites010306 general physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonConstellationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer databasebusiness.industryGravitational waveModular designPathfinderSkyTemporal resolutionGamma Ray BurstsbusinessAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

A complete X-ray spectral coverage of the 2010 May-June outbursts of Circinus X-1

2012

Circinus X-1 is a neutron-star-accreting X-ray binary in a wide (P$_{\rm orb}$ = 16.6 d), eccentric orbit. After two years of relatively low X-ray luminosity, in May 2010 Circinus X-1 went into outburst, reaching 0.4 Crab flux. This outburst lasted for about two orbital cycles and was followed by another shorter and fainter outburst in June. We focus here on the broadband X-ray spectral evolution of the source as it spans about three order of magnitudes in flux. We attempt to relate luminosity, spectral shape, local absorption, and orbital phase. We use multiple Rossi-XTE/PCA (3.0--25 keV) and Swift/XRT (1.0--9.0 keV) observations and a 20 ks long Chandra/HETGS observation (1.0--9.0 keV), t…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral shape analysis010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-raybinaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profiles [X-rays]FOS: Physical sciencesAstronomy and AstrophysicsOrbital eccentricityAstrophysicsLight curve01 natural sciencesSpectral evolutionSettore FIS/05 - Astronomia E AstrofisicaAccretion disc13. Climate actionSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCircinusX-rays: binaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profilesAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

2017

CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} \approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_X\approx10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the begin…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesTechniques: SpectroscopicAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsneutron; Techniques: Spectroscopic; X-rays: Binaries; X-rays: Bursts; X-rays: Individuals: EXO 1745-248; Astronomy and Astrophysics; Space and Planetary Science [Stars]01 natural sciencesIonization0103 physical sciencesX-rays: BurstAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaX-rays: Individuals: EXO 1745-248Doppler broadening
researchProduct

A self-consistent approach to the hard and soft states of 4U 1705-44

2010

We analyzed two XMM-Newton observations of the bright atoll source 4U 1705-44, which can be considered a prototype of the class of the persistent NS LMXBs showing both hard and soft states. The first observation was performed when the source was in a hard low flux state, the second during a soft, high-flux state. Both the spectra show broad iron emission lines. We fit the spectra using a two-component model, together with a reflection model specifically suited to the case of a neutron star, where the incident spectrum has a blackbody shape. In the soft state, the reflection model, convolved with a relativistic smearing component, consistently describes the broad features present in the spec…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsSpectral lineBoundary layerNeutron starSettore FIS/05 - Astronomia E AstrofisicaSoft stateSpace and Planetary ScienceIonizationThermalBlack-body radiationEmission spectrumAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

2016

We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $\sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $\sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{\odot}$, which assumes a neutron star mass of 1.4 M$_{\odot}$ and a maximum inclination angle of $75^{\…

X-rays: binaries pulsars: general stars: neutron accretion accretion disks binaries: generalMetallicityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsWhite dwarfAstronomy and Astrophysicsbinaries pulsars: general stars: neutron accretion accretion disks binaries: general [X-rays]Orbital periodNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

SWIFT J1756.9-2508: spectral and timing properties of its 2018 outburst

2018

We discuss the spectral and timing properties of the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 observed by XMM-Newton, NICER and NuSTAR during the X-ray outburst occurred in April 2018. The spectral properties of the source are consistent with a hard state dominated at high energies by a non-thermal power-law component with a cut-off at ~70 keV. No evidence of iron emission lines or reflection humps has been found. From the coherent timing analysis of the pulse profiles, we derived an updated set of orbital ephemerides. Combining the parameters measured from the three outbursts shown by the source in the last ~11 years, we investigated the secular evolution of the spin frequency…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsEphemerisOrbital period01 natural sciencesstars: neutronX-rays: binariesAmplitudePulsar13. Climate actionSpace and Planetary Science0103 physical sciencesNeutronEmission spectrumAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAuthor Keywords:accretion accretion disc
researchProduct

Study of the reflection spectrum of the LMXB 4U 1702-429

2016

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaIonization0103 physical sciencesStars: individual: 4U 1702-429Emission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsindividual: 4U 1702-429; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAccretion (astrophysics)Stars: neutronNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

2016

In this paper, we report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source was characterized by a flaring-like behavior, with typical rise and decay time scales of ~120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi periodic oscillation (QPO) is detected at ~8 mHz in the power spectrum of the source and clearly associated with the flaring-like behavior. This feature has the strongest po…

Astrophysics::High Energy Astrophysical PhenomenaPulsars: individual: IGR J00291+5934FOS: Physical sciencesAstrophysics01 natural sciencesPulsarMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Millisecond010308 nuclear & particles physicsOscillationSpectral densityAstronomyAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAstrophysics - Astrophysics of GalaxiesStars: neutronBlack holeNeutron starindividual: IGR J00291+5934; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Pulsars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Improved orbital parameters of accreting millisecond pulsar SAX J1808.4-3658

2006

Abstract We analyze the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000, and 2002 observed with RXTE. With a technique based on epoch folding search we find an unique orbital solution valid over the five years of high temporal resolution data available. We revise the estimate of the orbital period, P orb  = 7249.1569(1) s and of its error, which we decrease by one order of magnitude. We also give the first constraint on the orbital period derivative, - 6.6 × 10 - 12 P ˙ orb + 0.8 × 10 - 12 s s - 1 . We find that in 2002 the pulse profile shape is clearly asymmetric, showing a secondary peak at about 145° from the main pulse, which is different fr…

Orbital elementsPhysicsAtmospheric ScienceEpoch (astronomy)Aerospace EngineeringAstronomyAstronomy and AstrophysicsAstrophysicsOrbital periodPulse (physics)Orb (astrology)GeophysicsSpace and Planetary ScienceMillisecond pulsarGeneral Earth and Planetary SciencesHigh temporal resolutionOrder of magnitudeAdvances in Space Research
researchProduct

Preliminary Results on Intermittent Behaviour of Millisecond Pulsar SAX J1808.4-3658

2004

We analyzed RXTE data from the burst of the year 2000 of the X-ray millisecond binary pulsar SAX J 1808.4-3658 with the intent of determining the new orbital parameters.We used the observations of SAX J1808.4-3658 performed by the Rossi X-Ray Timing Explorer (RXTE) when the source was again detected in outburst during the period January-March 2000 (Wijnands et al. 2001). In particular we examined the data from the Proportional Counter Array (РСA) (Jahoda et al. 1996). We first applied barycentric correction to the data using the optical coordinates of the source (Roche et al. 98).

PhysicsOrbital elementsMillisecondMillisecond pulsarProportional counterAstrophysicsBinary pulsarInternational Astronomical Union Colloquium
researchProduct

Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

2006

We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…

neutron; stars : magnetic fields; pulsars : general; pulsars : individual : IGR J00291+5934; X-ray : binaries [accretion accretion disks; stars]X-rays : binariesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion diskAstrophysicsX-ray : binariesBinary pulsarLuminositypulsars : individual : IGR J00291+5934symbols.namesakePulsarMillisecond pulsarAstrophysics::Solar and Stellar Astrophysicspulsars : individual (IGR J00291+5934)PhysicsAccretion (meteorology)general; pulsars : individual (IGR J00291+5934); stars : magnetic fields; stars : neutron; X-rays : binaries [pulsars]Astrophysics (astro-ph)pulsars : generalStatic timing analysisAstronomystars : magnetic fieldAstronomy and Astrophysicsstars : neutronNeutron starSpace and Planetary SciencesymbolsAstrophysics::Earth and Planetary AstrophysicsDoppler effectX-ray pulsar
researchProduct

Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project

2021

The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future …

CubeSatsHigh energyHigh-energy astronomyReal-time computingFOS: Physical sciences01 natural sciences7. Clean energy010309 opticsX-rays0103 physical sciencesNano-satellitesTemporal triangulationInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsConstellationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsModular designPathfinderTemporal resolutionGamma Ray BurstsTransient (oscillation)Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

2021

Ambrosino, F., et al.

Angular momentum010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminosityNeutron starsSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsAccretion (astrophysics)Particle accelerationNeutron starAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

2022

We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4$-$3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of $\simeq 1\times10^{36} \, \mathrm{erg \, s^{-1}}$ in about a week, the pulsar entered in a $\sim 1$ month-long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of $\dot{\nu}_{\textrm{SD}}=-(1.15\pm0.06)\times 10^{-15} \, \mathrm{Hz\,s^{-1}}$, compatible with the spin-down torque of a $\approx 10^{26} \, \mathrm{G \, cm^3}$ rotating magnetic dipole.…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceFOS: Physical sciencesMillisecond pulsarAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaStellar accretion diskNeutron starsThe Astrophysical Journal Letters
researchProduct

Timing of the 2008 outburst of SAX J1808.4–3658 with XMM-Newton: a stable orbital-period derivative over ten years

2009

We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which …

PhysicsOrbital elementsAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesSecular evolutionAstronomy and AstrophysicsAstrophysicsDerivativeOrbital periodstars: neutron stars: magnetic fields X-rays: binaries X-rays: individuals: SAX J1808.4-3658Astrophysics - Astrophysics of GalaxiesLuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstronomy & Astrophysics
researchProduct

The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

2020

arXiv:2012.01346v1

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsMagnetarQuantitative Biology::OtherComputer Science::Digital Libraries01 natural sciencesNeutron starsX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesMagnetarsAccretion disks magnetars neutron stars pulsar X-rays:binaries X-rays:burstseducationX-rays: bursts010303 astronomy & astrophysicsPulsarsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_study010308 nuclear & particles physicsCrab PulsarAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceAccretion disksSpin-upAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions

2021

HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In t…

Computer scienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField of viewAstrophysics01 natural sciencesAstrophysics - Instrumentation and MethodsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCubeSatTransient (computer programming)Aerospace engineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsConstellationHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbusiness.industryGravitational wavePayloadAstrophysics::Instrumentation and Methods for AstrophysicsSteradianSatelliteAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAstrophysics - High Energy Astrophysical PhenomenaSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

Time domain astronomy with the THESEUS satellite

2021

THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstronomyAstrophysics::High Energy Astrophysical PhenomenaSocio-culturaleFOS: Physical sciencesX-ray sources01 natural scienceslaw.inventionTelescopeX-ray sourceSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesTime domain[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Variability010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesmedia_commonTime domain astronomyPhysicsSpectrometerGravitational waveX-rays surveysAstronomyAstronomy and AstrophysicsUniverseSpace and Planetary ScienceSatelliteNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsExperimental Astronomy
researchProduct

Timing of the accreting millisecond pulsar IGR~J17511--3057

2010

{Timing analysis of Accretion-powered Millisecond Pulsars (AMPs) is a powerful tool to probe the physics of compact objects. The recently discovered \newigrj is the 12 discovered out of the 13 AMPs known. The Rossi XTE satellite provided an extensive coverage of the 25 days-long observation of the source outburst.} {Our goal is to investigate the complex interaction between the neutron star magnetic field and the accretion disk, determining the angular momentum exchange between them. The presence of a millisecond coherent flux modulation allows us to investigate such interaction from the study of pulse arrival times. In order to separate the neutron star proper spin frequency variations fro…

Orbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)Order (ring theory)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsNeutron starSettore FIS/05 - Astronomia E AstrofisicaAmplitudeSpace and Planetary ScienceMillisecond pulsarHarmonicAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenastars neutron stars magnetic field pulsars general pulsars individual IGR J17511-3057 X-rays binaries
researchProduct

New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years

2010

We report on a timing of the eclipse arrival times of the low mass X-ray binary and X-ray pulsar 2A 1822-371 performed using all available observations of the Proportional Counter Array on board the Rossi X-ray Timing Explorer, XMM-Newton pn, and Chandra. These observations span the years from 1996 to 2008. Combining these eclipse arrival time measurements with those already available covering the period from 1977 to 1996, we obtain an orbital solution valid for more than thirty years. The time delays calculated with respect to a constant orbital period model show a clear parabolic trend, implying that the orbital period in this source constantly increases with time at a rate $\dot P_orb = …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrofisicaGravitational waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsOrbital periodAstrophysics - Astrophysics of Galaxiessymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarOrders of magnitude (time)Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Eddington luminositysymbolsAstrophysics - High Energy Astrophysical PhenomenaLow MassEclipse
researchProduct

X-ray spectroscopic study of the ADC source X1822-371

2011

We analyse two Chandra HETGS (High Energy Transmission Grating Spectrometer) observations and one XMM-Newton observation. The HETGS and XMM/Epic-pn observed X 1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. The spectra cover the energy band between 0.4 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is 3.5 × 1022 cm-2 and the covered fraction is around 60 %. We detected and identified several emission lines…

Materials scienceEmission linesAnalytical chemistryX-ray
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

A ionized reflecting skin above the accretion disk of GX 349+2

2009

The broad emission features in the Fe-Kalpha region of X-ray binary spectra represent an invaluable probe to constrain the geometry and the physics of these systems. Several Low Mass X-ray binary systems (LMXBs) containing a neutron star (NS) show broad emission features between 6 and 7 keV and most of them are nowi nterpreted as reflection features from the inner part of an accretion disk in analogy to those observed in the spectra of X-ray binary systems containing a Black Hole candidate. The NS LMXB GX 349+2 was observed by the XMM-Newton satellite which allows, thanks to its high effective area and good spectral resolution between 6 and 7 keV, a detailed spectroscopic study of the Fe-Ka…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSpectral lineline: identification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: generalBlack holeidentification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: general [line]Neutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumSpectral resolutionRelativistic quantum chemistryAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

Temporal Analysis of the Millisecond X-ray Pulsar SAX J1808.4-3658 During the 2000 Outburst

2005

We report a temporal analysis of the millisecond X-ray Pulsar SAX J1808.4-3658 during the 2000 outburst, observed with RXTE. The observed maximum luminosity was approximately a factor of ten lower than in the other outbursts exhibited by the source, and this low flux level forced us to use a technique based on the χ2 obtained with an epoch folding search to discriminate between different possible orbital solutions, in order to correct the data for the orbital motion. In the subsequent searches for periodicities we clearly detected the 401Hz pulsation in at least two observations, but in the faintest the pulsed fraction varied from 20 % ca. to the absence of signs of coherent pulsation at al…

PhysicsMillisecondAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyContext (language use)AstrophysicsX-ray neutron stars accreting millisecondLuminosityPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsX-ray pulsar
researchProduct

Indications of non-conservative mass-transfer in AMXPs

2019

Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesPulsarpulsars: general0103 physical sciencesX-rays: individuals: IGR J17498−2921X-rays: individuals: IGR J17498-2921010303 astronomy & astrophysicsX-rays: individuals: XTE J1814−338PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsX-rays: binarieX-rays: individuals: XTE J1814-338Radiation pressureSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Magnetic dipole
researchProduct

SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

2016

We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for si…

Astrophysics::High Energy Astrophysical PhenomenaPulsar planetEnergy fluxFOS: Physical sciencesGamma-rays: starAstrophysics01 natural sciencesBinary pulsarSettore FIS/05 - Astronomia E AstrofisicaSpitzer Space TelescopePulsarMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsStars: neutronStars: individual: SAX J1808.4-3658Space and Planetary ScienceOrbital motionstars; Stars: individual: SAX J1808.4-3658; Stars: neutron; Space and Planetary Science; Astronomy and Astrophysics [Gamma-rays]Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+00…

2019

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $\sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, o…

AccretionAccretion disks-pulsars: Individual (psr j1023+0038)-stars: Neutron-X-rays: Binaries010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsX-rayAstronomy and AstrophysicsTime resolutionAccretion (astrophysics)Space and Planetary ScienceVisible bandAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

Optical pulsations from a transitional millisecond pulsar

2017

Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is still strong enough to channel the accreting matter towards the magnetic poles. When mass transfer is much reduced or ceases altogether, pulsed emission generated by particle acceleration in the magnetosphere and powered by the rotation of the neutron star is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing betwee…

TELESCOPERAYAstrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSEARCHESSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarSIGNALS0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsPSR J1023+0038ACCRETION010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Millisecond010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsXSS J12270-4859Accretion (astrophysics)STATEParticle accelerationNeutron starVARIABILITYPolarAstrophysics::Earth and Planetary AstrophysicsEMISSIONAstrophysics - High Energy Astrophysical PhenomenaXSS J12270-4859; PSR J1023+0038; Ray; telescope; accretion; emission; variability; searches; signals; state
researchProduct

The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

2017

We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an acc…

Gran Telescopio CanariasAstrophysics::High Energy Astrophysical Phenomenaneutron X-rays: binaries accretion accretion disks [stars]FOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discstars: neutron X-rays: binaries accretion accretion disks0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMillisecond010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLight curveOrbital period3. Good healthAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceOptical emission spectroscopyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The near-IR counterpart of IGR J17480-2446 in Terzan 5

2012

Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsarpulsars: general pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5Cluster (physics)Astrophysics::Solar and Stellar AstrophysicseducationStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studygeneral pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5 [pulsars]Astronomy and AstrophysicsGalaxyAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IGR J17329-2731: The birth of a symbiotic X-ray binary

2018

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesFluxAstrophysicsCompact star01 natural sciencesSpectral linelaw.inventionTelescopeSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieNeutron starX-rays: individuals: IGR J17329-273113. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Prolonged sub-luminous state of the new transitional pulsar candidate CXOU J110926.4-650224

2019

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4-650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of $\sim$20.1 (3300-10500 $\require{mediawiki-texvc} \AA$). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3-79 keV) spectrum was adequately described by an absorbed power law model with…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstrophysicsMethods: Data analysiAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesLuminosityAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaPulsarMethods: Observational0103 physical sciencesEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsStars: neutronX-rays: Individuals: CXOU J110926.4-650224Neutron star13. Climate actionSpace and Planetary ScienceMagnitude (astronomy)Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

IGR J17451-3022: a dipping and eclipsing low mass X-ray binary

2016

In this paper, we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instruments on-board INTEGRAL and the Swift/XRT showed that the event lasted for about 9 months and that the emission of the source remained soft for the entire period. The source emission is dominated by a thermal component (kT~1.2 keV), most likely produced by an accretion disk. The XMM-Newton observation carried out during the outburst revealed the presence of multiple absorption features in the soft X-ray emission that could be associated to the p…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesX-rays: individuals: IGR J17451-3022Astronomy and AstrophysicsAbsorption columnAstrophysicsAstronomy and AstrophysicOrbital periodX-rays: binarie01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary ScienceIonization0103 physical sciencesThermalbinaries; X-rays: individuals: IGR J17451-3022; Astronomy and Astrophysics; Space and Planetary Science [X-rays]Astrophysics - High Energy Astrophysical PhenomenaLow MassAbsorption (electromagnetic radiation)010303 astronomy & astrophysics
researchProduct

Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305

2007

We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.

Physicspulsars: general pulsars: individual: XTE J1751-305 stars: magnetic fields stars: neutron X-rays: binariesAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)Static timing analysisFluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicssymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarOrbital motionsymbolsDoppler effectSpin-½
researchProduct

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

2016

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($\sim0.9$ keV) by an electron population with kT$_e\sim30$ keV, and at lower energies by a blackbody component with kT$\sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3��$ confidence leve…

AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPulsar0103 physical sciencesneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion; Accretion discs; Stars]Emission spectrumSpectroscopy010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodX-rays: binarieStars: neutronNeutron starAmplitude13. Climate actionSpace and Planetary ScienceAccretion discAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

2018

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the…

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBinaries: generalAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsgeneral; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Binaries]Astronomy and AstrophysicsAstronomy and AstrophysicLight curveOrbital periodX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clustersymbolsElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaDoppler effect
researchProduct

XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

2008

We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)accretion accretion disks line: profiles stars: pulsars: individual: SAX J1808.4-3658 relativity X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarIonizationsymbolsAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicsDoppler effectAstrophysics::Galaxy AstrophysicsX-ray pulsarLine (formation)
researchProduct

The spin and orbit of the newly discovered pulsar IGR J17480-2446

2011

We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyAngular momentumAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars neutron stars rotation X-rays binaries pulsars individual IGR J17480-2446Accretion (astrophysics)LuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceGlobular clusterAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaeducationAstrophysics::Galaxy Astrophysics
researchProduct

Spin down during quiescence of the fastest known accretion-powered pulsar

2010

We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of ��dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)Gravitational waveAstrophysics::High Energy Astrophysical Phenomenagravitational waves stars: neutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetic fieldNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarQuadrupoleneutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binaries [gravitational waves stars]Astrophysics - High Energy Astrophysical PhenomenaSpin-½
researchProduct

Swings between rotation and accretion power in a binary millisecond pulsar

2013

It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods1, 2, 3. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar4, 5 whose emission is powered by the neutron star’s rotating magnetic field6. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars7, 8 and also by the evidence for a past accretion disc in a rotation-powered milli…

NEUTRON-STARSAstrophysics::High Energy Astrophysical PhenomenaBinary numberAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBinary pulsarX-RAY TRANSIENTSRADIO PULSARSSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsSAX J1808.4-3658Astrophysics::Galaxy AstrophysicsPhysicsMultidisciplinaryAstronomyHIDDENORBITCATALOGAccretion (astrophysics)EVOLUTIONNeutron starSPINHigh-energy astrophysicAstrophysics::Earth and Planetary AstrophysicsLow MassEMISSIONHigh-energy astrophysics; X-RAY TRANSIENTS; SAX J1808.4-3658; NEUTRON-STARS; RADIO PULSARS; EVOLUTION; EMISSION; SPIN; CATALOG; HIDDEN; ORBITX-ray pulsarNature
researchProduct

X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

2012

The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineidentification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: general [line]Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOptical depth (astrophysics)line: identification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: generalEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sight010308 nuclear & particles physicsResonanceAstronomy and AstrophysicsRadiusCoronaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

2015

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomyAstronomy and AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceformation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: general [line]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHumanitiesAstrophysics::Galaxy Astrophysics
researchProduct

X-ray spectroscopy of MXB 1728-34 with XMM-Newton

2011

We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaBolometerFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general [line]01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary Sciencelaw0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsline: formation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general
researchProduct

Detailed study of the X-ray and optical/UV orbital ephemeris of X1822-371

2011

Recent studies of the optical/UV and X-ray ephemerides of X1822-371 have found some discrepancies in the value of the orbital period derivative. Because of the importance of this value in constraining the system evolution, we comprehensively analyse all the available optical/UV/X eclipse times of this source to investigate the origin of these discrepancies. We collected all previously published X-ray eclipse times from 1977 to 2008, to which we added the eclipse time observed by Suzaku in 2006. This point is very important to cover the time gap between the last RXTE eclipse time (taken in 2003) and the most recent Chandra eclipse time (taken in 2008). Similarly we collected the optical/UV e…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-rayFOS: Physical sciencesAstronomy and Astrophysicsneutron X-rays: binaries X-rays: stars stars: individual: X1822-371 [stars]AstrophysicsDerivativeTime gapEphemerisOrbital period01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaCover (topology)Space and Planetary Sciencestars: neutron X-rays: binaries X-rays: stars stars: individual: X1822-3710103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaVariation (astronomy)010303 astronomy & astrophysicsEclipse
researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511−3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsNeutron starAmplitudeSpace and Planetary ScienceMillisecond pulsarOptical depth (astrophysics)Astrophysics::Solar and Stellar AstrophysicsElectron temperatureAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Precise determination of orbital parameters in system with slowly drifting phases: application to the case of XTE J1807-294

2007

We describe a timing technique that allows to obtain precise orbital parameters of an accreting millisecond pulsar in those cases in which intrinsic variations of the phase delays (caused e.g. by proper variation of the spin frequency) with characteristic timescale longer than the orbital period do not allow to fit the orbital parameters over a long observation (tens of days). We show under which conditions this method can be applied and show the results obtained applying this method to the 2003 outburst observed by RXTE of the accreting millisecond pulsar XTE J1807-294 which shows in its phase delays a non-negligible erratic behavior. We refined the orbital parameters of XTE J1807-294 usin…

Orbital elementsPhysicspulsars : individualAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)pulsars : generalFOS: Physical sciencesstars : magnetic fieldAstronomy and AstrophysicsAstrophysicsOrbital periodAstrophysicsstars : neutronX-ray : binariesXTE J1807-294Space and Planetary ScienceMillisecond pulsarAstrophysics::Earth and Planetary AstrophysicsSpin (physics)Variation (astronomy)magnetic fields; stars : neutron; pulsars : general; pulsars : individual; XTE J1807-294; X-ray : binaries [stars]Order of magnitude
researchProduct

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

2012

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEphemeris01 natural sciencesOccultationSettore FIS/05 - Astronomia E AstrofisicaPulsarObservatory0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAccretion (astrophysics)general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binaries [Moon pulsars]Moon pulsars: general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binariesSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenabusiness
researchProduct

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480−2446, during its 2010 outburst

2012

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

PhysicsAngular momentumAccretion (meteorology)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRadius01 natural sciencesLuminosityNeutron starPulsar13. Climate actionSpace and Planetary ScienceGlobular cluster0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsElectron temperatureAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Secular spin-down of the AMP XTE J1751-305

2011

Context. Of the 13 known accreting millisecond pulsars, only a few showed more than one outburst during the RXTE era. XTE J1751-305 showed, after the main outburst in 2002, other three dim outbursts. We report on the timing analysis of the latest one, occurred on October 8, 2009 and serendipitously observed from its very beginning by RXTE. Aims. The detection of the pulsation during more than one outburst permits to obtain a better constraint of the orbital parameters and their evolution as well as to track the secular spin frequency evolution of the source. Methods. Using the RXTE data of the last outburst of the AMP XTE J1751-305, we performed a timing analysis to improve the orbital para…

Orbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)Astrophysicsstars: neutron stars: magnetic field pulsars: general pulsars: individual:XTE J1751-305 X-rays: binariesNeutron starDipoleSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics - High Energy Astrophysical PhenomenaMagnetic dipoleSpin-½neutron stars: magnetic field pulsars: general pulsars: individual:XTE J1751-305 X-rays: binaries [stars]
researchProduct

Revised orbital parameters of the accreting millisecond pulsar SAX J1808.4-3658

2005

We present temporal analysis of the three outbursts of the X-ray millisecond pulsar SAX J1808.4-3658 that occurred in 1998, 2000 and 2002. With a technique that uses the chi^2 obtained with an epoch folding search to discriminate between different possible orbital solutions, we find an unique solution valid over the whole five years period for which high temporal resolution data are available. We revise the estimate of the orbital period, P_orb =7249.1569(1) s and reduce the corresponding error by one order of magnitude with respect to that previously reported. Moreover we report the first constraint on the orbital period derivative, -6.6 x 10^-12 < Pdot < +0.8 x 10^-12 s/s. These val…

PhysicsOrbital elementsEpoch (astronomy)Astrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsDerivativeOrbital periodAstrophysicsPulse (physics)Orb (astrology)Space and Planetary ScienceMillisecond pulsarOrder of magnitude
researchProduct

Order in the Chaos: Spin-up and Spin-down during the 2002 Outburst of SAX J1808.4-3658

2006

We present a timing analysis of the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. A study of the phase delays of the entire pulse profile shows a behavior that is surprising and difficult to interpret: superposed to a general trend, a big jump by about 0.2 in phase is visible, starting at day 14 after the beginning of the outburst. An analysis of the pulse profile indicates the presence of a significant first harmonic. Studying the fundamental and the first harmonic separately, we find that the phase delays of the first harmonic are more regular, with no sign of the jump observed in the fundamental. The fitting of the phase delays of the first harmonic with a model whi…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)X-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsPulse (physics)Neutron starPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsStars: Pulsars: General Stars: Pulsars: Individual: SAX J1808.4-3658 Stars: Magnetic Fields Stars: Neutron X-Rays: BinariesExponential decaySpin-½
researchProduct