0000000000056114
AUTHOR
Yu. Sobolev
Cubic boron nitride: A new prospective material for ultracold neutron application
Abstract At the ultracold neutron (UCN) source of the TRIGA research reactor in Mainz, we have measured for the first time the material optical wall-potential of cubic boron nitride. The measurements were performed with a time-of-flight (TOF) spectrometer. The samples investigated had a wall-potential of ( 305 ± 15 ) neV . This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.
New constraints on Lorentz invariance violation from the neutron electric dipole moment
We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.
First observation of trapped high-field seeking ultracold neutron spin states
Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Measuring the proton spectrum in neutron decay - latest results with aSPECT
The retardation spectrometer aSPECT was built to measure the shape of the proton spectrum in free neutron decay with high precision. This allows us to determine the antineutrino electron angular correlation coefficient a. We aim for a precision more than one order of magnitude better than the present best value, which is Delta_a /a = 5%. In a recent beam time performed at the Institut Laue-Langevin during April / May 2008 we reached a statistical accuracy of about 2% per 24 hours measurement time. Several systematic effects were investigated experimentally. We expect the total relative uncertainty to be well below 5%.
Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields
We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n') oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B', UCN losses would be maximal for B = B'. We did not observe any indication for nn' oscillations and placed a lower limit on the oscillation time of tau_{nn'} > 12.0 s at 95% C.L. for any B' between 0 and 12.5 uT.
Short-range fundamental forces
Abstract We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.
Limit on Lorentz andCPTviolation of the bound neutron using a free precessionHe3/Xe129comagnetometer
We report on the search for Lorentz-violating sidereal variations of the frequency difference of colocated spin species while the Earth and hence the laboratory reference frame rotates with respect to a relic background field. The comagnetometer used is based on the detection of freely precessing nuclear spins from polarized 3 He and 129 Xe gas samples using SQUIDs as low-noise magnetic flux detectors. As result we can determine the limit for the equatorial component of the background field interacting with the spin of the bound neutron to be b n ⊥ < 3.7 · 10- 32 GeV (95% C.L.).
Allmendingeret al.Reply:
New Limit on Lorentz-Invariance- andCPT-Violating Neutron Spin Interactions Using a Free-Spin-PrecessionHe3-Xe129Comagnetometer
We report on the search for a $CPT$- and Lorentz-invariance-violating coupling of the $^{3}\mathrm{He}$ and $^{129}\mathrm{Xe}$ nuclear spins (each largely determined by a valence neutron) to posited background tensor fields that permeate the Universe. Our experimental approach is to measure the free precession of nuclear spin polarized $^{3}\mathrm{He}$ and $^{129}\mathrm{Xe}$ atoms in a homogeneous magnetic guiding field of about 400 nT using ${\mathrm{LT}}_{C}$ SQUIDs as low-noise magnetic flux detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the colocated spin samples. As a result we obtain…
Losses and depolarization of ultracold neutrons on neutron guide and storage materials
At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\t…
Test of Lorentz invariance with spin precession of ultracold neutrons
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{\bot} < 2 \times 10^{-20} {\rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 \times …
Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins
Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.
Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a $^3$He-$^{129}$Xe Comagnetometer
We performed a search for a Lorentz-invariance- and CPT-violating coupling of the $^3$He and $^{129}$Xe nuclear spins to posited background fields. Our experimental approach is to measure the free precession of nuclear spin polarized $^3$He and $^{129}$Xe atoms using SQUID detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the co-located spin samples. As a result we obtain an upper limit on the equatorial component of the background field $\tilde{b}^n_{\bot}< 8.4 \cdot 10^{-34}$ GeV (68\% C.L.). Furthermore, this technique was modified to search for an electric dipole moment (EDM) of $^{129}$X…
Towards a new measurement of the neutron electric dipole moment
International audience; The effort towards a new measurement of the neutron electric dipole moment (nEDM) at the Paul Scherrer Institut's (PSI) new high intensity source of ultracold neutrons (UCN) is described. The experimental technique relies on Ramsey's method of separated oscillatory fields, using UCN in vacuum with the apparatus at ambient temperature. In the first phase, R&D towards the upgrade of the RAL/Sussex/ILL apparatus is being performed at the Institut Laue-Langevin (ILL). In the second phase the apparatus, moved from ILL to PSI, will allow an improvement in experimental sensitivity by a factor of 5. In the third phase, a new spectrometer should gain another order of magnitud…
Additional results from the first dedicated search for neutron–mirror neutron oscillations
International audience; The existence of a mirror world holding a copy of our ordinary particle spectrum could lead to oscillations between the neutron (n) and its mirror partner (n′). Such oscillations could manifest themselves in storage experiments with ultracold neutrons whose storage lifetime would depend on the applied magnetic field. Here, extended details and measurements from the first dedicated experimental search for nn′ oscillations published in [G. Ban, K. Bodek, M. Daum, R. Henneck, S. Heule, M. Kasprzak, N. Khomutov, K. Kirch, S. Kistryn, A. Knecht, P. Knowles, M. Kuźniak, T. Lefort, A. Mtchedlishvili, O. Naviliat-Cuncic, C. Plonka, G. Quéméner, M. Rebetez, D. Rebreyend, S. R…
Probing Lorentz invariance and other fundamental symmetries in3He/129Xe clock-comparison experiments
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. Characteristic spin precession times T*2 of up to 60 h were measured in low magnetic fields (about 1μT) and in the regime of motional narrowing. With the detection of the free precession of co-located 3He/129Xe nuclear spins (clock comparison), the device can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out in the weighted frequency difference, i.e., Δω = ωHe− γHe/γXe·ωXe. We report on searches …