0000000000056163
AUTHOR
Maria Carmela Groccia
Image classification based on 2D feature motifs
The classification of raw data often involves the problem of selecting the appropriate set of features to represent the input data. In general, various features can be extracted from the input dataset, but only some of them are actually relevant for the classification process. Since relevant features are often unknown in real-world problems, many candidate features are usually introduced. This degrades both the speed and the predictive accuracy of the classifier due to the presence of redundancy in the candidate feature set. In this paper, we study the capability of a special class of motifs previously introduced in the literature, i.e. 2D irredundant motifs, when they are exploited as feat…
2D motif basis applied to the classification of digital images
The classification of raw data often involves the problem of selecting the appropriate set of features to represent the input data. Different types of features can be extracted from the input dataset, but only some of them are actually relevant for the classification process. Since relevant features are often unknown in real-world problems, many candidate features are usually introduced. This degrades both the speed and the predictive accuracy of the classifier due to the presence of redundancy in the set of candidate features. Recently, a special class of bidimensional motifs, i.e. 2D motif basis has been introduced in the literature. 2D motif basis showed to be powerful in capturing the r…