0000000000056354
AUTHOR
Luca De Siena
Acoustic Emission Waveform Picking with Time Delay Neural Networks during Rock Deformation Laboratory Experiments
Abstract We report a new method using a time delay neural network to transform acoustic emission (AE) waveforms into a time series of instantaneous frequency content and permutation entropy. This permits periods of noise to be distinguished from signals. The model is trained in sequential batches, using an automated process that steadily improves signal recognition as new data are added. The model was validated using AE data from rock deformation experiments, using Darley Dale sandstone in fully drained conditions at a confining pressure of 20 MPa (approximately 800 m simulated depth). The model is initially trained by manual picking of five high-amplitude waveforms randomly selected from t…
Three-dimensional kernel-based coda attenuation imaging of caldera structures controlling the 1982-84 Campi Flegrei unrest
Abstract Coda-wave attenuation imaging has risen as a state-of-the-art technique to depict volcanic structures using their dispersion effects. The 1982–84 seismic and deformation unrest at Campi Flegrei caldera (Italy) is a unique example of non-eruptive volcanic activity in a structured caldera. Here, we propose the first application of 3D coda-attenuation kernels to image caldera structures at multiple frequencies during unrest. Using sensitivity kernels is necessary to assess the effective resolution of coda imaging in highly heterogeneous volcanoes. The technique relies on the solution of Paasschens' equations in the framework of radiative transfer theory. The results map coda attenuati…
Scattering and absorption imaging of a highly fractured fluid-filled seismogenetic volume in a region of slow deformation
Regions of slow strain often produce swarm-like sequences, characterized by the lack of a clear mainshock-aftershock pattern. The comprehension of their underlying physical mechanisms is challenging and still debated. We used seismic recordings from the last Pollino swarm (2010–2014) and nearby to separate and map seismic scattering (from P peak-delays) and absorption (from late-time coda-wave attenuation) at different frequencies in the Pollino range and surroundings. High-scattering and high-absorption anomalies are markers of a fluid-filled fracture volume extending from SE to NW (1.5–6 Hz) across the range. With increasing frequency, these anomalies approximately cover the area where t…
P and S wave travel time tomography of the SE Asia-Australia collision zone
© 2019 Elsevier B.V. The southeast (SE)Asia - Australia collision zone is one of the most tectonically active and seismogenic regions in the world. Here, we present new 3-D P- and S-wave velocity models of the crust and upper mantle by applying regional earthquake travel-time tomography to global catalogue data. We first re-locate earthquakes provided by the standard ISC-Reviewed and ISC-EHB catalogues using a non-linear oct-tree scheme. A machine learning algorithm that clusters earthquakes depending on their spatiotemporal density was then applied to significantly improve the consistency of travel-time picks. We used the Fast Marching Tomography software package to retrieve 3-D velocity a…
Thermo‐Hydro‐Mechanical Model and Caprock Deformation Explain the Onset of an Ongoing Seismo‐Volcanic Unrest
Acknowledgments The authors are grateful to the Editor, Prof. Ben‐Zion Yehuda, and the reviewers: Prof. Micol Todesco and an anonymous reviewer, whose comments and recommendations have significantly improved the quality of this work. The authors acknowledge the financial support of the Petroleum Technology Development Fund (PTDF) Nigeria for this research. The comparison of our models with monitoring data was made possible by the outstanding efforts of the staff at the INGV‐Osservatorio Vesuviano, who provide weekly information about geophysical parameters at the Campanian volcanoes (http://www.ov.ingv.it/ov/en/bollettini/272-campi-flegrei-bollettini-settimanali.html). The authors are parti…
Modelling regional-scale attenuation across Italy and the Tyrrhenian Sea
Abstract Modelling regional-scale attenuation of seismic waves at ~1 Hz is challenging, especially when these waves propagate across both continental and oceanic crust. Recent developments in seismic imaging and modelling have provided us with the computational tools necessary to reconstruct these mixed settings using deterministic (coherent) and stochastic (coda) information. Here, we present new tomographic maps of coda-attenuation for both the Italian peninsula and the Tyrrhenian Sea. Kernel-based coda attenuation imaging in the diffusive approximation is tested in the oceanic environment, highlighting a non-diffusive behaviour across the Southern Tyrrhenian Sea. Joint deterministic and …
Source Mechanisms of Laboratory Earthquakes During Fault Nucleation and Formation
Identifying deformation and pre-failure mechanisms preceding faulting is key for fault mechanics and for interpreting precursors to fault rupture. This study presents the results of a new and robust derivation of first motion polarity focal mechanism solutions (FMS) applied to acoustic emission (AE). FMS are solved using a least squares minimization of the fit between projected polarity measurements and the deviatoric stress field induced by dilatational (T-type), shearing (S-type), and compressional (C-type) sources. 4 × 10 cm cylindrical samples of Alzo Granite (AG, porosity <1%) and Darley Dale Sandstone (DDS, porosity ≈14%) underwent conventional triaxial tests in order to investigat…
Petro-mineralogical controls on coda attenuation in volcanic rock samples
SUMMARY Seismic attenuation measurements, especially those obtained from coda decay analysis, are becoming a key data source for the characterization of the heterogeneous Earth due to their sensitivity to small-scale heterogeneities. However, the relation between the scattering attenuation measured from coda waves and physical rock properties is still unclear. The goal of this study is to identify the main petrophysical and mineralogical factors controlling coda attenuation in volcanic rocks at the laboratory scale, as a necessary step before modelling seismic waves in real volcanic media. Coda wave attenuation was estimated from ultrasonic S-wave waveforms. To quantify the heterogeneity of…
Editorial: Seismicity in Volcanic Areas
International audience
New insights into seismic absorption imaging
Abstract In recent years, attenuation has been used as a marker for source and dynamic Earth processes due to its higher sensitivity to small variations of lithospheric properties compared to seismic velocity. From seismic hazard analysis to oil and gas exploration and rock physics, many fields need a better reconstruction of energy absorption, a constituent of seismic attenuation generally considered a reliable marker of fluid saturation in space. Here, we propose absorption tomography (AT), a technique grounded on the principles of scattering tomography and Multiple Lapse Time Window Analysis. We benchmark its efficiency to image absorption in space by comparing its results with those obt…
Hot water injection in relation to 1982-84 microseismic events at Campi Flegrei Caldera by thermo-hydro-mechanical simulation
The repeated deformations and seismic unrests at Campi Flegrei caldera (southern Italy) have been identified due to a fluid injection source in volcano active area. We investigated the role of hot water injection in the seismic unrests of 1982-1984 with a view to gaining insights into the caldera’s dynamics, by applying coupled TOUGHREACT-FLAC3D simulator to our computational domain of 10 × 1 × 3 km with a single-phase steam isothermal (HM) and non-isothermal (THM) simulations comparison. The results indicated that the overlying caprock blocks the uprising hot water injection, leading to the building up of pore pressure and shear stress underneath over time. This process substantially modif…