0000000000056445
AUTHOR
Andrew D. Greentree
Spontaneous quantity discrimination of artificial flowers by foraging honeybees
ABSTRACTMany animals need to process numerical and quantity information in order to survive. Spontaneous quantity discrimination allows differentiation between two or more quantities without reinforcement or prior training on any numerical task. It is useful for assessing food resources, aggressive interactions, predator avoidance and prey choice. Honeybees have previously demonstrated landmark counting, quantity matching, use of numerical rules, quantity discrimination and arithmetic, but have not been tested for spontaneous quantity discrimination. In bees, spontaneous quantity discrimination could be useful when assessing the quantity of flowers available in a patch and thus maximizing f…
Honeybees prefer novel insect-pollinated flower shapes over bird-pollinated flower shapes
AbstractPlant–pollinator interactions have a fundamental influence on flower evolution. Flower color signals are frequently tuned to the visual capabilities of important pollinators such as either bees or birds, but far less is known about whether flower shape influences the choices of pollinators. We tested European honeybee Apis mellifera preferences using novel achromatic (gray-scale) images of 12 insect-pollinated and 12 bird-pollinated native Australian flowers in Germany; thus, avoiding influences of color, odor, or prior experience. Independent bees were tested with a number of parameterized images specifically designed to assess preferences for size, shape, brightness, or the number…