0000000000056456

AUTHOR

Baiba Turovska

Carbene-metal complexes as molecular scaffolds for construction of through-space TADF emitters

Through-space charge transfer (CT) process is observed in Cu(I) carbene-metal-amide complexes, where conventional imidazole or imidazoline N-heterocyclic (NHC) carbene fragments act as inert linkers and CT proceeds between a metal-bound carbazole donor and a distantly situated carbene-bound phenylsulfonyl acceptor. The resulting electron transfer gives a rise to efficient thermally activated delayed fluorescence (TADF), characterized with high photoluminescence quantum yields (ΦPL up to 90 %) and radiative rates (kr) up to 3.32×105 s-1. TADF process is aided by fast reverse intersystem crossing (rISC) rates of up to 2.56×107 s-1. Such emitters can be considered as hybrids of two existing TA…

research product

Photoelectrical Properties and Energetical Structure of Thin Films of Indandione Derivatives

A sandwich type structure of two dimetilaminobenziliden-1,3-indandione (DMABI) derivatives placed between metal electrodes was made to investigate the photoelectrical properties of these derivatives. DMABI is an organic isolator with a wide energy gap and high quantum efficiency of the photogeneration, DMABI derivatives have received also considerable attention because of its large dipole moment and optical nonlinearities. Besides, since it is a photosensitive material, its use in solar systems is very promising. The energy gap of each material and combined system was observed from the spectral dependence of the quantum efficiency of the photoconductivity and results are compared with resul…

research product

Energy structure and electro-optical properties of organic layers with carbazole derivative

Abstract Phosphorescent organic light emitting diodes are perspective in lighting technologies due to high efficient electroluminescence. Not only phosphorescent dyes but also host materials are important aspect to be considered in the devices where they are a problem for blue light emitting phosphorescent molecules. Carbazole derivative 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole (TCz1) is a good candidate and has shown excellent results in thermally evaporated films. This paper presents the studies of electrical properties and energy structure in thin films of spin-coated TCz1 and thermally evaporated tris[2-(2,4-difluorophenyl)pyridine]iridium(III) (Ir(Fppy)3). The 0.46 eV difference …

research product

Synthesis, spectroscopic and conformational analysis of 1,4-dihydroisonicotinic acid derivatives

Abstract Structural and conformational properties of 1,4-dihydroisonicotinic acid derivatives, characterized by ester, ketone or cyano functions at positions 3 and 5 in solid and liquid states have been investigated by X-ray analysis and nuclear magnetic resonance and supported by quantum chemical calculations. The dihydropyridine ring in each of the compounds exists in flattened boat-type conformation. The observed ring distortions around the C(4) and N(1) atoms are interrelated. The substituent at N(1) has great influence on nitrogen atom pyramidality. The 1H, 13C and 15N NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as…

research product

Rational computing of energy levels for organic electronics: the case of 2-benzylidene-1,3-indandiones

Device engineering in organic electronics, an active area of research, requires knowledge of the energy levels of organic materials (traditionally but ambiguously denoted as HOMO and LUMO). These can be effectively determined by electrochemical investigation, but yet more effective would be quantum chemical (QC) computation of these quantities. However, there is no consensus on the computational method in the research community. Ongoing discussions often focus on choosing the right density functional method, but neglect other model parameters, in particular, the basis set. This study considers comparison of various methodologies and parameters for predicting ionization energy I and electron…

research product

Electrochemical study of intramolecular charge transfer complexes derived from 1,4-naphthoquinone Part 1. Electroreduction

Abstract Electrochemical investigations (polarography, cyclic voltammetry, rotating ring-disk electrode voltammetry) of intramolecular charge transfer complexes (AC) derived from 1,4-naphthoquinone were performed in acetonitrile. It is concluded that in the first one-electron stage of its electrochemical reduction the AC is in a complexed form. At the same time the amino moiety, which shows a marked inductive (−I) effect, acts as an electron donor in the donor-acceptor (D-A) interaction. Facilitation of the reduction of the quinone part by the aryl amine residue is compensated by the D-A interaction, which makes the electroreduction more difficult. By using ultramicroelectrodes it was shown…

research product

CCDC 907700: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 901799: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 907698: Experimental Crystal Structure Determination

Related Article: Irina Novosjolova, Erika Bizdena, Sergey Belyakov, Maris Turks|2013|Mat.Sci.Appl.Chem.|28|39|doi:10.7250/msac.2013.007

research product

CCDC 901798: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 901796: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 993834: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 901797: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 906252: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 994212: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 907699: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 931406: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 993756: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 907992: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 908863: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 996232: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 901800: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 915981: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 933608: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 991747: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product

CCDC 907837: Experimental Crystal Structure Determination

Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044

research product