0000000000056591
AUTHOR
Lars Björck
Human kininogens interact with M protein, a bacterial surface protein and virulence determinant.
Streptococcus pyogenes, the most significant streptococcal species in clinical medicine, expresses surface proteins with affinity for several human plasma proteins. Here we report that kininogens, the precursors to the vasoactive kinins, bind to the surface of S. pyogenes. M protein, a surface molecule and a major virulence factor-in these bacteria, occurs in > 80 different serotypes. Among 49 strains of S. pyogenes, all of different M serotypes, 41 bound radiolabelled kininogens, whereas 6 M protein-negative mutant strains showed no affinity. M protein of most serotypes bind fibrinogen, and among the 55 strains tested, binding of kininogens was closely correlated to fibrinogen bindi…
Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin.
H-kininogen (high-molecular-mass kininogen, HK) is the precursor of the vasoactive peptide hormone bradykinin (BK). Previous work has demonstrated that HK binds to Streptococcus pyogenesthrough M-proteins, fibrous surface proteins and important virulence factors of these bacteria. Here we find that M-protein-expressing bacteria absorb HK from human plasma. The HK bound to the bacteria was found to be cleaved, and analysis of the degradation pattern suggested that the cleavage of HK at the bacterial surface is associated with the release of BK. Moreover, addition of activated plasma prekallikrein to bacteria preincubated with human plasma, resulted in BK release. This mechanism, by which a p…
Activation of the contact-phase system on bacterial surfaces--a clue to serious complications in infectious diseases.
Fever, hypotension and bleeding disorders are common symptoms of sepsis and septic shock. The activation of the contact-phase system is thought to contribute to the development of these severe disease states by triggering proinflammatory and procoagulatory cascades; however, the underlying molecular mechanisms are obscure. Here we report that the components of the contact-phase system are assembled on the surface of Escherichia coli and Salmonella through their specific interactions with fibrous bacterial surface proteins, curli and fimbriae. As a consequence, the proinflammatory pathway is activated through the release of bradykinin, a potent inducer of fever, pain and hypotension. Absorpt…
Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli.
Previous work has demonstrated that most strains of the human pathogen Streptococcus pyogenes bind kininogens through M protein, a fibrous surface protein and virulence determinant. Here we find that strains of several other pathogenic bacterial species, both Gram-positive and Gram-negative, isolated from patients with sepsis, also bind kininogens, especially kininogen (HK). The most pronounced interaction was seen between HK and Escherichia coli. Among clinical isolates of E. coli, the majority of the enterohaemorrhagic, enterotoxigenic, and sepsis strains, but none of the enteroinvasive and enteropathogenic strains, bound HK. Binding of HK to E. coli correlated with the expression of curl…