0000000000056850
AUTHOR
Sami Kurkinen
A Practical Perspective : The Effect of Ligand Conformers on the Negative Image-Based Screening
Negative image-based (NIB) screening is a rigid molecular docking methodology that can also be employed in docking rescoring. During the NIB screening, a negative image is generated based on the target protein’s ligand-binding cavity by inverting its shape and electrostatics. The resulting NIB model is a drug-like entity or pseudo-ligand that is compared directly against ligand 3D conformers, as is done with a template compound in the ligand-based screening. This cavity-based rigid docking has been demonstrated to work with genuine drug targets in both benchmark testing and drug candidate/lead discovery. Firstly, the study explores in-depth the applicability of different ligand 3D conformer…
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome
Funding Information: This work was supported by Academy of Finland grants 285461 (H.T.), 330678 (H.T., J.R.), 277194 (H.L.), and 290677 (S.M.). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing synchrotron access for crystal data collection. We thank Prof. Janne Ihalainen (University of Jyväskylä) for all the help in all aspects of the paper, Prof. Gerrit Groenhof (University of Jyväskylä) for support, and Prof. Nikolai V. Tkachenko (Tampere University) for help and facilities for time-resolved absorption spectroscopy. We also thank M.Sc. Alli Liukkonen (University of Jyväskylä) and Dr. Heikki Häkkänen (University of Jyväskylä) for the assistance in laboratory …
Improving Docking Performance Using Negative Image-Based Rescoring
Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing th…