0000000000056907
AUTHOR
F. Giacoppo
Spectroscopy along flerovium decay chains. II : Fine structure in odd-A289Fl
Fifteen correlated α-decay chains starting from the odd-A superheavy nucleus 289Fl were observed following the fusion-evaporation reaction 48Ca+244Pu. The results call for at least two parallel α-decay sequences starting from at least two different states of 289Fl. This implies that close-lying levels in nuclei along these chains have quite different spin-parity assignments. Further, observed α-electron and α-photon coincidences, as well as the α-decay fine structure along the decay chains, suggest a change in the ground-state spin assignment between 285Cn and 281Ds. Our experimental results, on the excited level structure of the heaviest odd-N nuclei to date, provide a direct testing groun…
Spectroscopic Tools Applied to Flerovium Decay Chains
Abstract An upgraded TASISpec setup, with the addition of a veto DSSD and the new Compex detector-germanium array, has been employed with the gas-filled recoil separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, to study flerovium (element 114) decay chains. The detector upgrades along with development of new analytical techniques have improved the sensitivity of the TASISpec setup for measuring α-photon coincidences. These improvements have been assessed with test reactions. The reaction 48Ca+206,207Pb was used for verification of experimental parameters such as transmission to implantation DSSD and target-segment to α-decay correlations. The reaction 48Ca+ nat …
Structure of low-lying states in 140Sm studied by Coulomb excitation
The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 2+ 1 state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and alge…
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
Neutron-skin thickness of 208Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance
The $^{208}$Pb($p$,$n\gamma\bar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $\gamma$-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness ($\Delta R_{pn}$). By comparing the theoretical results with the measured transition energy, the value of 0.190 $\pm$ 0.028 fm has been determined for $\Delta R_{pn}$ of $^{208}$Pb, in agreement with previous experiment…
The decay energy of the pure s-process nuclide ¹²³ Te
Physics letters / B 758, 407 - 411 (2016). doi:10.1016/j.physletb.2016.04.059
The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes
© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …
Carbon fragmentation measurements and validation of the GEANT4 nuclear reaction models for hadrontherapy
Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 6…
Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP
Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…
COMPASS—A COMPAct decay spectroscopy set-up
Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …
Spectroscopy along flerovium decay chains. III : Details on experiment, analysis, 282Cn, and spontaneous fission branches
Flerovium isotopes (element Z=114) were produced in the fusion-evaporation reactions 48Ca+242,244Pu and studied with an upgraded TASISpec decay station placed in the focal plane of the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Twenty-nine flerovium decay chains were identified by means of correlated implantation, α decay, and spontaneous fission events. Data analysis aspects and statistical assessments, primarily based on measured rates of various events, which laid the foundation for the comprehensive spectroscopic information on the flerovium decay chains, are presented in detail. Various decay scenarios of an excited state obse…
Atom-at-a-time laser resonance ionization spectroscopy of nobelium
Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…
Precision Measurement of the First Ionization Potential of Nobelium
One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for st…
Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements
With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…
A setup to develop novel Chemical Isobaric SEparation (CISE)
Abstract Gas catchers are widely used to thermalize nuclear reaction products and subsequently extract them for precision measurements. However, impurities in the inert stopping gas can chemically react with the ions and thus influence the extraction efficiency. So far, chemical reactions in the gas-catcher have not been investigated in detail. Therefore, we are currently building a new setup to develop Chemical Isobaric SEparation (CISE) with the aim to understand the chemistry inside the gas-catcher and to explore its potential as a new technique for separation of isobars. In this paper, we give a short description of the setup together with the ion transportation studies performed via io…
Spectroscopy of Low-lying States in $^{140}$Sm
International audience; Electromagnetic transition strengths and spectroscopic quadrupole moments for Sm-140 were measured by means of multi-step Coulomb excitation with radioactive beam at the ISOLDE facility at CERN. A complementary experiment was performed at the Heavy Ion Laboratory in Warsaw to assign spins for non-yrast states using the angular correlation technique. Based on the new experimental data previous spin assignments need to be revised.
The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP
Direct high-precision mass spectrometry of the heaviest elements with SHIPTRAP, at GSI in Darmstadt, Germany, requires high efficiency to deal with the low production rates of such exotic nuclides. A second-generation gas stopping cell, operating at cryogenic temperatures, was developed and recently integrated into the relocated system to boost the overall efficiency. Offline measurements using 223Ra and 225Ac recoil-ion sources placed inside the gas volume were performed to characterize the gas stopping cell with respect to purity and extraction efficiency. In addition, a first online test using the fusion-evaporation residue 254No was performed, resulting in a combined stopping and extrac…
Experimental observation of the M1 scissors mode in $^{254}No$
Physics letters / B 834, 137479 (2022). doi:10.1016/j.physletb.2022.137479
$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…
Spectroscopy along Flerovium Decay Chains: Discovery ofDs280and an Excited State inCn282
A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively. A prompt coincidence between a 9.60(1)-MeV α particle event and a 0.36(1)-MeV conversion electron marked the first observation of an excited state in an even-even isotope of the heaviest man-made eleme…
Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium
International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are c…
Simulation studies of the laser ablation ion source at the SHIPTRAP setup
Hyperfine interactions 241(1), 46 (2020). doi:10.1007/s10751-020-01708-0