6533b870fe1ef96bd12cfd9f

RESEARCH PRODUCT

Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium

Michael BlockC. WraithF. P. HeßbergerEnrique Minaya RamirezWerner LauthF. LautenschlägerDieter AckermannP. ChhetriF. GiacoppoJadambaa KhuyagbaatarHartmut BackeSebastian RaederMustapha LaatiaouiChristoph E. DüllmannPeter KunzAlexander YakushevS. GötzRafael FerrerThomas WaltherA. K. MistryJulia EvenOliver KalejaBradley Cheal

subject

YtterbiumQuenching (fluorescence)Materials scienceBuffer gaschemistry.chemical_elementRate equation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAtomic and Molecular Physics and OpticsSpectral line010305 fluids & plasmaschemistry0103 physical sciencesAtomic Physicsddc:530NobeliumPhysics::Atomic PhysicsAtomic physics010306 general physicsGround stateSpectroscopy

description

International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are currently unknown.

10.1140/epjd/e2017-80122-xhttps://hal.science/hal-01582876