0000000000404229

AUTHOR

Enrique Minaya Ramirez

showing 4 related works from this author

The cryogenic gas stopping cell of SHIPTRAP

2014

The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a 219Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significa…

Speichertechnik - Abteilung BlaumNuclear and High Energy PhysicsChemistryFermiumBuffer gasAnalytical chemistrychemistry.chemical_elementMass spectrometryIon sourceIonRecoilVolume (thermodynamics)InstrumentationHeliumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Atom-at-a-time laser resonance ionization spectroscopy of nobelium

2016

Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…

PhysicsMultidisciplinary010308 nuclear & particles physicsFermiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceschemistry13. Climate actionIonization0103 physical sciencesAtomAtomic numberNobeliumPhysics::Atomic PhysicsAtomic physics010306 general physicsSpectroscopyRelativistic quantum chemistryLawrenciumNature
researchProduct

Isotope dependence of the Zeeman effect in lithium-like calcium

2016

The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions an…

ScienceGeneral Physics and Astronomychemistry.chemical_elementElectron01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle010305 fluids & plasmasIonBohr magnetonsymbols.namesakeRecoilNuclear magnetic resonance0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)Nuclear ExperimentPhysicsCondensed Matter::Quantum GasesMultidisciplinaryZeeman effectMagnetic momentQGeneral ChemistrychemistrysymbolsLithiumddc:500Präzisionsexperimente - Abteilung BlaumAtomic physicsNature Communications
researchProduct

Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium

2017

International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are c…

YtterbiumQuenching (fluorescence)Materials scienceBuffer gaschemistry.chemical_elementRate equation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAtomic and Molecular Physics and OpticsSpectral line010305 fluids & plasmaschemistry0103 physical sciencesAtomic Physicsddc:530NobeliumPhysics::Atomic PhysicsAtomic physics010306 general physicsGround stateSpectroscopy
researchProduct