0000000000006218
AUTHOR
F. P. Heßberger
Radioactive decay of 217Pa
The radioactive decay of 217Pa was investigated by means of α-γ-spectroscopy. Fine structure in the ground-state α-decay was established. Ambiguities in the fine structure of the α-decay of the previously known isomeric state could be clarified by α-γ-coincidence measurements. A previously unknown α-transition of Eα = (8306 ± 5) keV was detected and identified by means of delayed α-α- and α-γ-γ-coincidence measurements. A second isomeric state decaying by α-emission was not observed. The quality of the previously reported data of the α-decay fine structure of 217Th was improved.
The identification and confirmation of isomeric states in 254Rf and 255Rf through conversion electron detection
Abstract The neutron-deficient isotopes 254,255Rf were produced in the fusion-evaporation reaction 50Ti + 206Pb at the gas-filled recoil separator TASCA. Decay properties of these nuclei were investigated by applying fast digital electronics. A search for isomeric states in both isotopes was performed by using the accompanying conversion electron emissions. Isomeric states with half-lives of 4(1) μs and >30 μs were measured for 254Rf and 255Rf, respectively, which confirm the findings at different separators. The present experimental results demonstrate the great potential of fast digital electronics for measurements of isomeric states in the heaviest nuclei, which are only producible in sm…
Towards saturation of the electron-capture delayed fission probability : The new isotopes 240Es and 236Bk
The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n)240Es. Half-lives of 6(2) sand 22+13−6swere obtained for 240Es and 236Bk, respectively. Two groups of αparticles with energies Eα=8.19(3) MeVand 8.09(3) MeVwere unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6)and 0.04(2)were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes. peerReviewed
Stability of the heaviest elements: K isomer in No250
Decay spectroscopy of No250 has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of No250 reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2=3.8±0.3μs to the ground state and the longer half-life t1/2=34.9−3.2+3.9μs to the decay of an isomeric stat…
On-line commissioning of SHIPTRAP
Abstract The on-line commissioning of the Penning-trap mass spectrometer SHIPTRAP was successfully completed with a mass measurement of holmium and erbium radionuclides produced at SHIP. A large fraction of contaminant ions created in the stopping cell was identified to originate from the buffer-gas supply system. Using a liquid nitrogen cold trap they were reduced to a tolerable amount and mass measurements of Er 147 , Er 148 , and Ho 147 with relative uncertainties of about 1 × 1 0 − 6 were performed.
The new nuclide225U
In the bombardment of a 270μg/cm 2 180Hf target with48 Ca projectiles at a primary beam energy of E/A=4.24 MeV/u the new nuclide225U was produced. The experiment was performed at the velocity filter SHIP. 225U was found to decay by α emission with Eα=(7880 ±20) keV (≈90%), (7830±20) keV (≈10%) and has a half-life ofT 1/2=(80 −20 +40 ms).
Alpha-Photon Coincidence Spectroscopy Along Element 115 Decay Chains
Produced in the reaction 48Ca+243Am, thirty correlated α-decay chains were observed in an experiment conducted at the GSI Helmholzzentrum fur Schwerionenforschung, Darmstadt, Germany. The decay chains are basically consistent with previous findings and are considered to originate from isotopes of element 115 with mass numbers 287, 288, and 289. A set-up aiming specifically for high-resolution charged particle and photon coincidence spectroscopy was placed behind the gas-filled separator TASCA. For the first time, γ rays as well as X-ray candidates were observed in prompt coincidence with the α-decay chains of element 115.
In-beam spectroscopy of $^{253,254}$No
In-beam conversion electron spectroscopy experiments have been performed on the transfermium nuclei 253,254No using the conversion electron spectrometer SACRED in nearly collinear geometry in conjunction with the gas-filled separator RITU at the University of Jyvaskyla. The experimental setup is discussed and the spectra are compared to Monte Carlo simulations. The implications for the ground-state configuration of 253No are discussed.
Measurement of Evaporation Residue and Fission Cross Sections of the Reaction 30Si + 238U at Subbarrier Energies
Effects of the prolate deformation of 238 U on fusion were studied in the reaction 30 Si + 238 U at bombarding energies close to the Coulomb barrier. The fission (capture) cross sections were measured at the JAEA tandem accelerator to see the enhancement of the cross sections in the subbarrier energy due to the lower Coulomb barrier in the collisions of projectile at the polar sides of 238 U. In order to obtain the direct evidence for complete fusion, evaporation residue cross sections were measured at UNILAC of GSI. At the subbarrier energy of Ec.m. = 133.0 MeV, where only polar collisions to 238 U occur, we measured three spontaneously fissioning nuclei which we assigned to the isotope 26…
In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm
The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…
Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am
Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z=115, two recoil-α-fission and five recoil-α-α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation ch…
First Study on Nihonium (Nh, Element 113) Chemistry at TASCA
Frontiers in Chemistry 9, 753738 (2021). doi:10.3389/fchem.2021.753738
Stability of the heaviest elements : K isomer in 250No
Decay spectroscopy of 250No has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of 250No reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2 = 3.8 ± 0.3 μs to the ground state and the longer half-life t1/2 = 34.9+3.9 −3.2 μs to the decay of an isom…
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
Production and Decay of Element 114: High Cross Sections and the New NucleusHs277
The fusion-evaporation reaction Pu-244(Ca-48, 3-4n)(288,289)114 was studied at the new gas-filled recoil separator TASCA. Thirteen correlated decay chains were observed and assigned to the production and decay of (288, 289)114. At a compound nucleus excitation energy of E* = 39.8-43.9 MeV, the 4n evaporation channel cross section was 9.8(-3.1)(+3.9) pb. At E* = 36.1-39.5 MeV, that of the 3n evaporation channel was 8.0-(+7.4)(4.5) pb. In one of the 3n evaporation channel decay chains, a previously unobserved alpha branch in (281)Ds was observed ( probability to be of random origin from background: 0.1%). This alpha decay populated the new nucleus (277)Hs, which decayed by spontaneous fission…
Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP
Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …
Quantum-state-selective decay spectroscopy of Ra213
An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a $^{48}\mathrm{Ca}$ beam impinging on a thin $^{170}\mathrm{Er}$ target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the $5n$ evaporation channel $^{213}\mathrm{Ra}$ was mass-selected in SHIPTRAP, and the $^{213}\mathrm{Ra}$ ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 s…
Some remarks on the discovery of Md-244
In two recent papers by Pore et al. and Khuyagbaatar et al., discovery of the new isotope $^{244}\mathrm{Md}$ was reported. The decay data, however, are conflicting. While Pore et al. report two isomeric states decaying by $\ensuremath{\alpha}$ emission with ${E}_{\ensuremath{\alpha}}(1)=8.66(2)\text{ }\text{ }\mathrm{MeV}$, ${T}_{1/2}(1)={0.4}_{\ensuremath{-}0.1}^{+0.4}\text{ }\text{ }\mathrm{s}$ and ${E}_{\ensuremath{\alpha}}(2)=8.31(2)\text{ }\text{ }\mathrm{MeV}$, ${T}_{1/2}(2)\ensuremath{\approx}6\text{ }\text{ }\text{ }\mathrm{s}$, Khuyagbaatar et al. [Phys. Rev. Lett. 125, 142504 (2020).] report only a single transition with a broad energy distribution of ${E}_{\ensuremath{\alpha}}=(…
β-delayed fission of192,194At
By using the recoil-fission correlation technique, the exotic process of beta-delayed fission ($\ensuremath{\beta}$DF) was unambiguously identified in the very neutron-deficient nuclei ${}^{192,194}$At in experiments at the velocity filter SHIP at Gesellschaft f\"ur Schwerionenforschung (GSI). The upper limits for the total kinetic energy release in fission of ${}^{192,194}$Po, being the daughter products of ${}^{192,194}$At after ${\ensuremath{\beta}}^{+}/EC$ decay, were estimated. The possibility of an unusually high $\ensuremath{\beta}$DF probability for ${}^{192}$At is discussed.
Low-lying states in Ra219 and Rn215 : Sampling microsecond α -decaying nuclei
Short-lived α-decaying nuclei "northeast" of 208Pb in the chart of nuclides were studied using the reaction 48Ca+243Am with the decay station TASISpec at TASCA, GSI Darmstadt. Decay energies and times from pile-up events were extracted with a tailor-made pulse-shape analysis routine and specific α-decay chains were identified in a correlation analysis. Decay chains starting with the even-even 220Ra and its odd-A neighbors, 219Fr, and 219,221Ra, with a focus on the 219Ra→215Rn decay, were studied by means of α-γ spectroscopy. A revised α-decay scheme of 219Ra is proposed, including a new decay branch from a previously not considered isomeric state at 17 keV excitation energy. Conclusions on …
Fine structure in a alpha decay of 188, 192Po
The α decay of 188,192Po has been reexamined in order to probe the 0+ states in the daughter nuclei 184,188Pb that can be associated with coexisting spherical, oblate, and∕or prolate configurations. Improved values were measured for the excitation energy and the feeding α-decay intensity of the 0+2state in 184,188Pb and conflicting results on the 0+3 state in 188Pb were clarified. All known cases of fine structure in the α decay of the even-even Po nuclei are reviewed. The reduced α-decay width systematics combined with potential-energy-surface calculations confirm the onset of deformation in the ground state of the polonium nuclei around the neutron midshell. An isomeric state with a half-…
Decay studies of new isomeric states in 255No
The decay of excited states in 255No was investigated by applying the evaporation-residue–conversion-electron correlation technique. Two new isomeric states were observed in 255No together with the previously known one. Excitation energies of the isomeric states were estimated based on the energies of conversion electrons and γ rays from correlation chains. These results were in accord with theoretical calculations based on the mean-field models. A tentative decay scheme of isomeric states in 255No is proposed, and their Nilsson configurations are discussed. The energy decrease of the 11/2−[725] Nilsson level for heavy N=153 isotones as a function of increasing proton number is confirmed. p…
Spontaneous fission of rutherfordium isotopes - total kinetic energies
The isotopes 255,256,258Rf were produced in the fusion-evaporation reactions 50Ti + 207,208Pb and 50Ti + 209Bi at GSI Darmstadt, using the velocity filter SHIP. Total kinetic energies of fragments from spontaneous fission for these isotopes were evaluated with a correction to pulse-height defect.
STUDIES OF SUPERHEAVY ELEMENTS AT SHIP
An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238 UF 4 with 48 Ca . One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.
β-delayed fission andαdecay ofAt196
A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduce…
Determination of the partial electron capture- and spontaneous-fission half-lives of254No
The isotope254No was produced in the fusion reaction48Ca +208Pb. Using the velocity filter SHIP and radiochemical techniques it was found that the nuclide254No with a half-life of 55 s decays byα, EC, and spontaneous-fission. Deduced partial half-lives are (61±2) s forα-decay, (550−160+370) s for EC and [2.2−1.0+2.0]×104 s for spontaneous fission.
Decay study of 246Fm at SHIP
The decay chain of 246Fm has been investigated employing the SHIP separator at GSI Darmstadt. The 246Fm nuclei were produced via the 40Ar(208Pb, 2n)246Fm fusion-evaporation reaction. Improved values of the half-life, T 1/2 = 1.54(4) s, and of the spontaneous fission branching ratio, b SF = 0.068(6) , of 246Fm were obtained. The $ \beta^{+}_{}$ /electron capture branching ratio, b EC = 0.39(3) , of 242Cf was deduced. Possible structures of high-K states in 246Fm are discussed within the framework of a model calculation based on the Woods-Saxon potential.
Alpha decay of the new isotopes 188,189Po
New neutron-deficient isotopes 188,189Po have been produced in the complete fusion reaction of 52Cr ions with a 142Nd target at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of α-γ and α-conversion electron coincidence measurements and of α-α position and time correlations. In 189Po a ground state to ground state α decay with Eα1= 7540(20) keV, T1/2= 5(1) ms and two fine structure α-decays at Eα2= 7264(15) keV and Eα3= 7316(15) keV have been observed. In 188Po (T1/2= 400+200 −150μs) a ground state to ground state α decay at Eα= 7915(25) keV and a fine structure α decay at Eα= 7350(40) keV have been found. Improved data o…
Superheavy element flerovium (element 114) is a volatile metal.
The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…
The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes
© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …
Isomeric states in Rf256
The question of the number and origin of isomeric states in $^{256}\mathrm{Rf}$ arose from two independent experiments but remained unanswered for a decade. To shed light on this puzzle, we studied isomeric decay in $^{256}\mathrm{Rf}$ by measuring conversion electrons with fast fully digital electronics. $^{256}\mathrm{Rf}$ was produced in the fusion-evaporation reactions of $^{50}\mathrm{Ti}+^{207}\mathrm{Pb}$ and $^{50}\mathrm{Ti}+^{208}\mathrm{Pb}$ at the gas-filled recoil separator TransActinide Separator and Chemistry Apparatus. Among a total of 120 decays of $^{256}\mathrm{Rf}$, we detected 22 and 12 decays proceeding through one and two isomeric states. Half-lives of the low- and hi…
Towards saturation of the electron-capture delayed fission probability: The new isotopes $^{240}Es$ and $^{236}Bk$
Abstract The new neutron-deficient nuclei 240 Es and 236 Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240 Es produced in the fusion–evaporation reaction 209 Bi( 34 S,3n) 240 Es. Half-lives of 6 ( 2 ) s and 22 − 6 + 13 s were obtained for 240 Es and 236 Bk, respectively. Two groups of α particles with energies E α = 8.19 ( 3 ) MeV and 8.09 ( 3 ) MeV were unambiguously assigned to 240 Es. Electron-capture delayed fission branches with probabilities of 0.16 ( 6 ) and 0.04 ( 2 ) were measured for 240 Es and 236 Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilitie…
A new assessment of the alleged link between element 115 and element 117 decay chains
Physics letters 760, 293-296(2016). doi:10.1016/j.physletb.2016.07.008
Fission in the landscape of heaviest elements: Some recent examples
The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10^−19 to 10^24 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10^5 to 10^3 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254−256Rf and 266Lr ar…
The new element 112
The new element 112 was produced and identified unambiguously in an experiment at SHIP, GSI Darmstadt. Two decay chains of the isotope277112 were observed in irradiations of208Pb targets with70Zn projectiles of 344 MeV kinetic energy. The isotope decays by emission of α particles with a half-life of (240 −90 +430 )µs. Two different α energies of (11,649±20) keV and (11,454±20) keV were measured for the two observed decays. The cross-section measured in three weeks of irradiations is (1.0 −0.4 +1.8 ) pb.
The new element 111
The new element 111 was produced and unambiguously identified in an experiment at SHIP, GSI Darmstadt. Three nuclei of the isotope272111 were observed in irradiations of209Bi targets with64Ni projectiles of 318 MeV and 320 MeV energy. The cross-sections are (1.7 −1.4 +3.3 ) pb and (3.5 −2.3 +4.6 ) pb, respectively. The nuclei decay by a emission into the new and so far the heaviest isotopes of the elements 109 and 107 with mass numbers A=268 and A=264. Theα-decay chains were followed down to the known nuclei260105 and256Lr.
Studies of SHE at SHIP
An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238UF4 with 48Ca. One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.
Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP
Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…
COMPASS—A COMPAct decay spectroscopy set-up
Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …
New results on elements 111 and 112
Experiments on the synthesis and identification of the nuclei 272111 and 277112 were performed in order to confirm previous results. Three additional decay chains were measured in the reaction 64Ni + 209Bi →273111*. The study revealed considerably improved data on the decay chain originating from 272111. One additional chain was measured in the reaction 70Zn + 208Pb →278112*. The decay properties of the chain starting at 277112 are in excellent agreement with the second chain of the first experiment down to 265Sg, where the new chain ends by a previously unknown spontaneous-fission branch. A re-analysis of all the data on elements 110, 111, and 112 measured at GSI since 1994 (a total of 34 …
Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…
β-delayed fission of186,188Bi isotopes
By using the technique of correlating implanted evaporation residues and their subsequent fission decay, $\ensuremath{\beta}$-delayed fission ($\ensuremath{\beta}$DF) of ${}^{186}$Bi has been identified for the first time and $\ensuremath{\beta}$DF of ${}^{188}$Bi has been unambiguously confirmed. The experiments were performed at the velocity filter SHIP (GSI, Darmstadt). The $\ensuremath{\beta}$DF probabilities for both nuclides were qualitatively estimated, and, in particular indications for a large value in the case of ${}^{186}$Bi are regarded.
α-decay spectroscopy of the new isotopeAt192
Decay properties of the new neutron-deficient nuclide $^{192}\mathrm{At}$ have been studied in the complete fusion reaction $^{144}\mathrm{Sm}$($^{51}\mathrm{V}$,3n)$^{192}\mathrm{At}$ at the velocity filter SHIP. Two isomeric states with half-lives of 88(6) ms and 11.5(6) ms, respectively, and with complex $\ensuremath{\alpha}$-decay schemes were identified in $^{192}\mathrm{At}$. The decay pattern of one of the isomers suggests that it is based on the oblate-deformed $\ensuremath{\pi}2{f}_{7/2}\ensuremath{\bigotimes}\ensuremath{\nu}1{i}_{13/2}$ configuration, which confirms the expected onset of deformation in the At isotopes by approaching the neutron midshell at $N=104$.
Production and decay of269110
In an experiment carried out to identify element 110, we have observed anα-decay chain, that can be unambiguously assigned to269110. In a scries of preexperiments the excitation functions of the fusion reactions50Ti +208Pb→258104* and58Fe +208Pb→266108* were measured with high precision in order to get the optimum projectile energies for the production of these heavy elements. The cross-section maxima of the 1n evaporation channels were observed at excitation energies of 15.6 MeV and 13.4 MeV, respectively. These data result in an optimum excitation energy of 12.3 MeV of the compound nucleus for the production of269110 in the reaction62Ni +208Pb→269110 + 1n. In irradiations at the correspon…
Direct mass measurements above uranium bridge the gap to the island of stability
The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…
Alpha decay study of 218U; a search for the sub-shell closure at Z=92
Neutron-deficient uranium isotopes were studied via α spectroscopic methods. A low-lying α-decaying isomeric state was found in 218U. The new isomeric state was assigned spin and parity I π = 8+. The isomer decays by α emission with an energy E = 10678(17) keV and with a half-life T 1/2 = (0.56 -0.14 +0.26 ) ms. The known alpha-decay properties of the ground state of 218U was measured with improved statistics. The ground-state α-decay has an energy E = 8612(9) keV and a half-life T 1/2 = (0.51 -0.10 +0.17 ) ms.
Cross section systematics for the lightest Bi and Po nuclei produced in complete fusion reactions with heavy ions
The production of the very neutron-deficient nuclides $^{184\ensuremath{-}192}\mathrm{Bi}$ and $^{186\ensuremath{-}192}\mathrm{Po}$ in the vicinity of the neutron midshell at N = 104 has been studied by using heavy-ion-induced complete fusion reactions in a series of experiments at the velocity filter SHIP. The cross sections for the xn and pxn evaporation channels of the $^{46}\mathrm{Ti}$+$^{144}\mathrm{Sm}$$\ensuremath{\rightarrow}^{190}\mathrm{Po}{}^{*},$$^{98}\mathrm{Mo}$+$^{92}\mathrm{Mo}$$\ensuremath{\rightarrow}^{190}\mathrm{Po}{}^{*},$$^{50,52}\mathrm{Cr}$+$^{142}\mathrm{Nd}$$\ensuremath{\rightarrow}^{192,194}\mathrm{Po}{}^{*}$, and $^{94,95}\mathrm{Mo}$+$^{93}\mathrm{Nb}$$\ensurem…
Probing intruder structures in lead nuclei
In-beam γ-ray spectroscopy measurements provide important information on coexisting normal and intruder configurations in lead nuclei. However, in these experiments the yrast states are preferentially populated so that in many cases nothing is known about non-yrast states that are essential for obtaining a fuller understanding. Complementary experiments designed to study fine structure in the a decays of polonium nuclei have led to the discovery of low-spin non-yrast states in the daughter lead nuclei, while higher-spin states can be identified through the γ decays of isomeric states. The α-decay studies have the additional benefit of allowing information on configuration mixing in the polo…
First prompt in-beam γ-ray spectroscopy of a superheavy element: the256Rf
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 , was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a s…
Atom-at-a-time laser resonance ionization spectroscopy of nobelium
Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…
On the adsorption and reactivity of element 114, flerovium
Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly v…
Precision Measurement of the First Ionization Potential of Nobelium
One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for st…
First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in thePu244(Ca48,3-4n) reaction
Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of Ca-48 to irradiate targets of Pb206-208, which led to the production of No252-254 isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ((288-291)114) were produced in irradiations of Pu-244 targets with Ca-48 beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were as…
Decay properties of neutron-deficient isotopes 256, 257Db, 255Rf, 252, 253Lr
Isotopes of dubnium (element 105) with mass numbers A = 256, 257, and 258 were produced by the reaction 209Bi(50Ti,xn) 259-xDb (x = 1, 2, 3) at projectile energies of (4.59-5.08) AMeV. Excitation functions were measured for the 1n, 2n and 3n evaporation channels. The same position of the excitation function was observed for the 1n channel as for the previously measured 1n channel of the reaction 208Pb(50Ti,1n)257Rf. The measured α-decay data of 257Db and its daughter products resulted in the identification of α-decaying isomeric states in 257Db and 253Lr. Two new isotopes, 256Db and 252Lr, were produced at the highest bombarding energies of 4.97 AMeV and 5.08 AMeV. They were identified by d…
α-decay of the new isotopePo187: Probing prolate structures beyond the neutron mid-shell at N = 104
The new neutron-deficient isotope $^{187}\mathrm{Po}$ has been identified in the complete fusion reaction $^{46}\mathrm{Ti}$+$^{144}\mathrm{Sm}$\ensuremath{\rightarrow}$^{187}\mathrm{Po}$+$3n$ at the velocity filter SHIP. Striking features of the $^{187}\mathrm{Po}$ \ensuremath{\alpha} decay are the strongly-hindered decay to the spherical ground state and unhindered decay to a surprisingly low-lying deformed excited state at 286 keV in the daughter nucleus $^{183}\mathrm{Pb}$. Based on the potential energy surface calculations, the $^{187}\mathrm{Po}$ ground state and the 286 keV excited state in $^{183}\mathrm{Pb}$ were interpreted as being of prolate origin. The systematic deviation of t…
In-beam study of 254No
Excited states of the Z = 102 nuclide 254No have been studied in the reaction 208Pb(48Ca,2n) by means of in-beam γ -ray spectroscopy in combination with recoil gating and recoil decay tagging. A Ge detector array, consisting of four clover detectors, and a gas-filled separator were used. Six γ-ray lines were observed and associated with E2 transitions in the ground state band of 254No, the highest-lying of these being the 16+→ 14+ transition. Based on global systematics and the extrapolated 2+ 1 excitation energy, the value β2= 0.27 ± 0.03 was extracted for the quadrupole deformation. An improved value for the half-life of 254No, T1/2= (48 ± 3) s, was determined.
Search for elements 119 and 120
A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…
Properties of heavy nuclei measured at the GSI SHIP
Abstract The nuclear shell model predicts that the next doubly magic shell-closure beyond 208 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘Super-Heavy Elements’ (SHEs). The measured decay data reveal that for the heaviest elements, the dominant decay mode is α emission, not fission. Decay properties as well as reaction cross-sections are compared with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques.At a higher sensitivity, the exploration of …
Search for Electron-Capture Delayed Fission in the New Isotope Md244
The electron-capture decay followed by a prompt fission process was searched for in the hitherto unknown most neutron-deficient Md isotope with mass number 244. Alpha decay with $\ensuremath{\alpha}$-particle energies of 8.73--8.86 MeV and with a half-life of ${0.30}_{\ensuremath{-}0.09}^{+0.19}\text{ }\text{ }\mathrm{s}$ was assigned to $^{244}\mathrm{Md}$. No fission event with a similar half-life potentially originating from spontaneous fissioning of the short-lived electron-capture decay daughter $^{244}\mathrm{Fm}$ was observed, which results in an upper limit of 0.14 for the electron-capture branching of $^{244}\mathrm{Md}$. Two groups of fission events with half-lives of ${0.9}_{\ens…
New Short-Lived IsotopeU221and the Mass Surface NearN=126
Two short-lived isotopes ^{221}U and ^{222}U were produced as evaporation residues in the fusion reaction ^{50}Ti+^{176}Yb at the gas-filled recoil separator TASCA. An α decay with an energy of E_{α}=9.31(5) MeV and half-life T_{1/2}=4.7(7) μs was attributed to ^{222}U. The new isotope ^{221}U was identified in α-decay chains starting with E_{α}=9.71(5) MeV and T_{1/2}=0.66(14) μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced widt…
Population of nuclides with Z≥98 in multi-nucleon transfer reactions of 48Ca + 248Cm
The results for nuclei above curium, produced in multi-nucleon transfer reactions of 48Ca + 248Cm at the velocity filter SHIP of GSI Darmstadt, are presented. Spontaneous fission and α-activities have been used to study the population of nuclei with lifetimes ranging from few milliseconds to several days. We observed several, relatively neutron-rich isotopes with atomic numbers Z≥98; among them a weak 224 millisecond activity which we tentatively attributed to 260No. The measured cross-sections of the observed nuclei give hope that multi-nucleon transfer reactions are a way to reach new neutron-rich heavy and superheavy nuclei, which are not accessible in other reactions. We compare our res…
Fine structure in theαdecay ofPo188,192
The alpha decay of Po-188,Po-192 has been reexamined in order to probe the 0(+) states in the daughter nuclei Pb-184,Pb-188 that can be associated with coexisting spherical, oblate, and/or prolate ...
Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements
Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.
Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.
Conversion electron and beta decay spectroscopy at SHIP
Abstract Novel methods for internal conversion electron and β -decay spectroscopy at the focal plane of a recoil separator are discussed. As an example the experimental data collected at the focal plane of the velocity filter SHIP (GSI, Darmstadt) are presented and compared with the results of the GEANT Monte Carlo simulations. It is shown that the simultaneous detection of conversion electrons, γ -rays and X-rays is possible, which significantly broadens the range of applications of this and similar systems.
Spontaneous fission instability of the neutron-deficient No and Rf isotopes: The new isotope No249
In the heaviest elements, the instability of atomic nuclei against spontaneous fission leads to ever shorter nuclear half-lives. Upon falling below a timescale of ${10}^{\ensuremath{-}14}$ s, the border of existence of isotopes is crossed because this is the timescale on which the formation of atomic shells occurs. Analysis of the experimental data on the spontaneous fission half-lives of Rf isotopes in relation with their expected single-particle orbitals hint at a potentially abrupt decrease in half-lives of unknown neutron-deficient Rf isotopes with neutron numbers $l149$, which suggests that the isotopic border is already almost reached. However, this conjecture, which cannot be explain…
K isomerism in Rf255 and total kinetic energy measurements for spontaneous fission of Rf255,256,258
Spontaneous fission properties of the isotopes $^{255}\mathrm{Rf}$, $^{256}\mathrm{Rf}$, and $^{258}\mathrm{Rf}$ produced in the reactions $^{50}\mathrm{Ti}+^{207}\mathrm{Pb}$, $^{50}\mathrm{Ti}+^{208}\mathrm{Pb}$, and $^{50}\mathrm{Ti}+^{209}\mathrm{Bi}$ were studied. The method of time and position correlations was used to identify spontaneous fission events. The correction to the energy deficit in measured total kinetic energy (TKE) determined on the basis of a study of $^{252}\mathrm{No}$ was applied to evaluate the $\overline{\mathrm{TKE}}$ of investigated rutherfordium isotopes. A signature which we assigned tentatively to bimodal fission was observed in TKE distributions of $^{255}\m…
Direct Mapping of Nuclear Shell Effects in the Heaviest Elements
Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.
Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of theZ=104NucleusRf256
The rotational band structure of the $Z=104$ nucleus $^{256}\mathrm{Rf}$ has been observed up to a tentative spin of $20\ensuremath{\hbar}$ using state-of-the-art $\ensuremath{\gamma}$-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-$j$ orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing i…
Charge radii and electromagnetic moments of At195–211
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…
New microsecond isomers in 189, 190Bi
New microsecond isomers in the neutron-deficient isotopes 189g, 190Bi have been identified after in-flight separation by the velocity filter SHIP. The evaporation residues were identified on the basis of delayed recoil-γ/X-ray, recoil-γ/X-ray-α and excitation function measurements. The systematics of the [ π1i 13/2]13/2+ excited states in the odd-mass Bi nuclei is discussed.
Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )
The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…
Study of non-fusion products in the Ti50+Cf249 reaction
The isotopic distribution of nuclei produced in the 50Ti + 249Cf reaction has been studied at the gas-filled recoil separator TASCA at GSI Darmstadt, which separates ions according to differences in magnetic rigidity. The bombardment was performed at an energy around the Bass barrier and with the TASCA magnetic fields set for collecting fusion-evaporation reaction products. Fifty-three isotopes located “north-east” of 208Pb were identified as recoiling products formed in non-fusion channels of the reaction. These recoils were implanted with energies in two distinct ranges; besides one with higher energy, a significant low-energy contribution was identified. The latter observation was not ex…
Excitation energy dependence of fragment-mass distributions from fission of 180,190 Hg formed in fusion reactions of 36 Ar + 144,154 Sm
Physics letters / B 748, 89 - 94 (2015). doi:10.1016/j.physletb.2015.06.068
Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies
Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.
To identify the atomic number of superheavy nuclei produced in Ca-48-induced fusion-evaporation reactions, an experiment aiming at measuring characteristic X-rays is being prepared at GSI, Darmstadt, Germany. The gas-filled separator TASCA will be employed, sending the residues towards the multi-coincidence detector setup TASISpec. Two ion-optical modes relying on differing magnetic polarities of the quadrupole magnets can be used at TASCA. New simulations and experimental tests of transmission and background suppression for these two focusing modes into TASISpec are presented.
Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium
International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are c…
117番元素Ts合成のための48Ca+249Bk融合反応
We have performed an experiment to synthesize the element 117 (Ts) with the $^{48}$Ca+$^{249}$Bk fusion reaction. Four $\alpha$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $\alpha$ decay of $^{294}$Ts. The other two were short decay chains which are consistent with the one originating from the $\alpha$ decay of $^{293}$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.
Quantum-state-selective decay spectroscopy of 213Ra
An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the …