6533b7defe1ef96bd1276562

RESEARCH PRODUCT

β-delayed fission andαdecay ofAt196

J. F. W. LaneYasuo WakabayashiV. L. TruesdaleB. A. MarshKara Marie LynchA. E. BarzakhD. V. FedorovThomas Elias CocoliosY. NagameKatsuhisa NishioMarc HuyseK. SandhuD. RadulovX. DerkxX. DerkxL. GhysF. P. HeßbergerV. N. FedosseevS. AntalicL. CapponiP. Van Den BerghS. OtaD. PauwelsJ. ElseviersS. MitsuokaA. N. AndreyevSebastian RotheSebastian RotheB. AndelS. SelsZ. KalaninováA. M. SjödinM. D. SeliverstovV. LiberatiP. Van DuppenE. RapisardaH. De WitteC. Van BeverenLucia PopescuUlli Köster

subject

PhysicsCold fissionDecay schemeCluster decay010308 nuclear & particles physicsFission01 natural sciencesExcited state0103 physical sciencesResonance ionizationDecay productAtomic physicsNuclear Experiment010306 general physicsSpectroscopy

description

A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduced based on the measured fission-fragment energies. A $\ensuremath{\beta}\text{DF}$ probability ${P}_{\ensuremath{\beta}\mathrm{DF}}(^{196}\mathrm{At})=9(1)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ was determined.

https://doi.org/10.1103/physrevc.94.034308