0000000000373239

AUTHOR

D. Radulov

showing 5 related works from this author

New developments of the in-source spectroscopy method at RILIS/ISOLDE

2013

At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…

Nuclear and High Energy PhysicsIon beamNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyISOLTRAPIonNuclear physicsIonization0103 physical sciencesPhysics::Atomic PhysicsLaser spectroscopy010306 general physicsSpectroscopyNuclear ExperimentInstrumentationHyperfine structureRresonance laser ionization010308 nuclear & particles physicsChemistryResonanceIon sourceIsotope shiftHyperfine structureAtomic physics
researchProduct

β-delayed fission andαdecay ofAt196

2016

A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduce…

PhysicsCold fissionDecay schemeCluster decay010308 nuclear & particles physicsFission01 natural sciencesExcited state0103 physical sciencesResonance ionizationDecay productAtomic physicsNuclear Experiment010306 general physicsSpectroscopyPhysical Review C
researchProduct

Measurement of the first ionization potential of astatine by laser ionization spectroscopy

2013

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…

Other Fields of PhysicsGeneral Physics and Astronomychemistry.chemical_element7. Clean energy01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlePhysics in GeneralAb initio quantum chemistry methodsCHEMISTRYIonization0103 physical sciencesAtomPhysics::Atomic and Molecular ClustersFACILITYPhysics::Atomic Physics010306 general physicsAstatineSpectroscopyPhysicsMultidisciplinary010308 nuclear & particles physicsGeneral ChemistryION-SOURCEIon source3. Good healthchemistry13. Climate actionIonization energyAtomic physicsValence electronNature Communications
researchProduct

Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source @ LISOL

2012

The Leuven Isotope Separator On-Line (LISOL) facility at the Cyclotron Research Center (CRC) Louvain-la-Neuve; The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63Cu. A final run under on-line conditions in which the ra…

Nuclear and High Energy PhysicsActive laser medium29.25.Ni 29.25.Rm 41.85.ArPhysics::OpticsLaser pumping[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesAtmospheric-pressure laser ionizationlaw.inventionlaw0103 physical sciencesUltrafast laser spectroscopyddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic Physics010306 general physicsInstrumentationDye laserta114010308 nuclear & particles physicsChemistryLaserIon sourceAtomic physicsAtomic vapor laser isotope separationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Charge radii and electromagnetic moments of At195–211

2018

Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…

PhysicsIsotope010308 nuclear & particles physicsElectron multiplierchemistry.chemical_elementCharge (physics)Mass spectrometry7. Clean energy01 natural scienceschemistry13. Climate action0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsAstatineSpectroscopyHyperfine structurePoloniumPhysical Review C
researchProduct