0000000000231019

AUTHOR

B. Andel

Large Shape Staggering in Neutron-Deficient Bi Isotopes

research product

Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure

The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…

research product

New ß-decaying state in 214Bi

research product

Laser Spectroscopy of Neutron-Rich $^{207,208}$Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the $N=126$ Shell Closure

The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…

research product

New developments of the in-source spectroscopy method at RILIS/ISOLDE

At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…

research product

Decay studies of the long-lived states in $^{186}$Tl

Decay spectroscopy of the long-lived states in $^{186}$Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The $\alpha$ decay from the low-spin $(2^-)$ state in $^{186}$Tl was observed for the first time and a half-life of $3.4^{+0.5}_{-0.4}$ s was determined. Based on the $\alpha$-decay energy, the relative positions of the long-lived states were fixed, with the $(2^-)$ state as the ground state, the $7^{(+)}$ state at 77(56)~keV and the $10^{(-)}$ state at 451(56) keV. The level scheme of the internal decay of the $^{186}$Tl($10^{(-)}$) state ($T_{1/2} = 3.40(9)$ s), which was known to decay solely through emission of 374 keV $\gamma$-ray transition, was extended and a lowe…

research product

Decay studies of new isomeric states in 255No

The decay of excited states in 255No was investigated by applying the evaporation-residue–conversion-electron correlation technique. Two new isomeric states were observed in 255No together with the previously known one. Excitation energies of the isomeric states were estimated based on the energies of conversion electrons and γ rays from correlation chains. These results were in accord with theoretical calculations based on the mean-field models. A tentative decay scheme of isomeric states in 255No is proposed, and their Nilsson configurations are discussed. The energy decrease of the 11/2−[725] Nilsson level for heavy N=153 isotones as a function of increasing proton number is confirmed. p…

research product

Spontaneous fission of rutherfordium isotopes - total kinetic energies

The isotopes 255,256,258Rf were produced in the fusion-evaporation reactions 50Ti + 207,208Pb and 50Ti + 209Bi at GSI Darmstadt, using the velocity filter SHIP. Total kinetic energies of fragments from spontaneous fission for these isotopes were evaluated with a correction to pulse-height defect.

research product

β-delayed fission andαdecay ofAt196

A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduce…

research product

Decay studies of the long-lived states in Tl-186

9 pags., 12 figs., 3 tabs.

research product

The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes

© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …

research product

New β-decaying state in 214Bi

A new β-decaying state in 214Bi has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred Iπ = (8−) assignment was suggested for this state based on the β-decay feeding pattern to levels in 214Po and shell-model calculations. The half-life of the Iπ = (8−) state was deduced to be T1/2 = 9.39(10) min. The deexcitation of the levels populated in 214Po by the β decay of this state was investigated via γ -γ coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in 214Bi and 214Po were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both ca…

research product

Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure

Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…

research product

Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations

Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…

research product

COMPASS—A COMPAct decay spectroscopy set-up

Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …

research product

Hyperfine anomaly in gold and magnetic moments of $I^{\pi}$ $= 11/2^{−}$ gold isomers

Physical review / C 101(3), 034308 (2020). doi:10.1103/PhysRevC.101.034308

research product

Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au

Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…

research product

Decay studies of the long-lived states in Tl186

Decay spectroscopy of the long-lived states in 186Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The α decay from the low-spin (2−) state in 186Tl was observed for the first time and a half-life of 3.4+0.5−0.4 s was determined. Based on the α-decay energy, the relative positions of the long-lived states were fixed, with the (2−) state as the ground state, the 7(+) state at 77(56) keV, and the 10(−) state at 451(56) keV. The level scheme of the internal decay of the 186Tl(10(−)) state [T1/2=3.40(9) s], which was known to decay solely through emission of 374-keV γ-ray transition, was extended and a lower limit for the β-decay branching bβ>5.9(3)% was determined. The extrac…

research product

A new beta-decaying state in 214Bi

research product

α -decay branching ratio of Pt180

research product

Shape coexistence in Au 187 studied by laser spectroscopy

Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …

research product

K isomerism in Rf255 and total kinetic energy measurements for spontaneous fission of Rf255,256,258

Spontaneous fission properties of the isotopes $^{255}\mathrm{Rf}$, $^{256}\mathrm{Rf}$, and $^{258}\mathrm{Rf}$ produced in the reactions $^{50}\mathrm{Ti}+^{207}\mathrm{Pb}$, $^{50}\mathrm{Ti}+^{208}\mathrm{Pb}$, and $^{50}\mathrm{Ti}+^{209}\mathrm{Bi}$ were studied. The method of time and position correlations was used to identify spontaneous fission events. The correction to the energy deficit in measured total kinetic energy (TKE) determined on the basis of a study of $^{252}\mathrm{No}$ was applied to evaluate the $\overline{\mathrm{TKE}}$ of investigated rutherfordium isotopes. A signature which we assigned tentatively to bimodal fission was observed in TKE distributions of $^{255}\m…

research product

Charge radii and electromagnetic moments of At195–211

Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…

research product

Large shape staggering in neutron-deficient Bi isotopes

The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…

research product

Characterization of the shape-staggering effect in mercury nuclei

In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…

research product