6533b856fe1ef96bd12b1cef

RESEARCH PRODUCT

Shape coexistence in Au 187 studied by laser spectroscopy

Nobuaki ImaiSusanne KreimT. Day GoodacreA. E. BarzakhD. V. FedorovC. Van BeverenMarco RosenbuschThomas Elias CocoliosLiam GaffneyP. Van DuppenD. A. FinkV. N. FedosseevKlaus BlaumG. J. Farooq-smithFrank WienholtzP. L. MolkanovR. D. HardingN. A. AlthubitiRobert WolfM. D. SeliverstovB. A. MarshS. AntalicK. M. LynchJ. G. CubissD. NeidherrDinko AtanasovRalf Erik RosselSebastian RotheE. VerstraelenM. Al MontheryY. Martinez PalenzuelaVladimir ManeaLutz SchweikhardD. LunneyB. AndelA. WelkerL. GhysKai ZuberA. De RoubinA. N. AndreyevMarc HuyseS. Sels

subject

PhysicsMagnetic momentIsotope010308 nuclear & particles physicsNuclear structure01 natural sciences7. Clean energyCharge radius0103 physical sciencesPhysics::Atomic and Molecular ClustersParticleDeformation (engineering)Atomic physics010306 general physicsGround stateSpectroscopy

description

Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed 9/2$^−$, 1/2$^−$[541] assignment at moderate prolate deformation for $^{187}$Au$^m$.

10.1103/physrevc.101.064321http://dx.doi.org/10.1103/physrevc.101.064321