0000000000087805

AUTHOR

D. Lunney

showing 43 related works from this author

Cadmium mass measurements between the neutron shell closures at N=50 and 82

2010

International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

CadmiumIsotopehigh-precision mass measurementsChemistryStable isotope ratioPenning trapRadiochemistrychemistry.chemical_element020206 networking & telecommunications02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP7. Clean energyISOLTRAPcadmium massesIsotope separationlaw.inventionlawIsotopes of cadmium0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNeutron21.10.Dr 21.30.Fe 27.60.+j 32.10.BiNucleon
researchProduct

PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPIRAL2

2021

International audience; A double Penning trap is being commissioned at CENBG Bordeaux for the future DESIR/SPIRAL2 facility of GANIL. The setup is designed to perform both high-resolution mass separation of the ion beam for trap-assisted spectroscopy, and high-accuracy mass spectrometry of short-lived nuclides. In this paper, the technical details of the new device are described. First offline tests with the purification trap are also presented, showing a mass resolving power of about 105.

PhysicsNuclear and High Energy PhysicsSpeichertechnik - Abteilung BlaumMass spectrometryIon beamPenning trap010401 analytical chemistryMass spectrometryPenning trap01 natural sciencesMass separation0104 chemical sciencesNuclear physicsTrap (computing)0103 physical sciencesBeam purificationNew device[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclide010306 general physicsSpectroscopyInstrumentationDESIR/SPIRAL2
researchProduct

Accumulation of positrons from a LINAC based source

2020

International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.

010302 applied physicsPhysicsMeasure (physics)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyGravitational acceleration01 natural sciencesLinear particle acceleratorPositroniumNuclear physicsPositronPositron plasma; Positron accumulation; Antimatter; Penning-Malmberg trap; Greaves-Surko trap; GBAR[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]AntiprotonAntimatter0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Accelerator PhysicsPhysics::Atomic Physics0210 nano-technologyAntihydrogenComputingMilieux_MISCELLANEOUSActa Physica Polonica A
researchProduct

Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure

2021

The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…

PhysicsProtonNuclear TheoryShell (structure)General Physics and AstronomyCharge (physics)Coupling (probability)01 natural sciencesAtomic orbitalPairing0103 physical sciencesNeutronAtomic physicsNuclear Experiment010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

First glimpse of the $N=82$ shell closure below $Z=50$ from masses of neutron-rich cadmium isotopes and isomers

2020

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}$Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}$Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.

Nuclear Theorynucl-thIsòtops[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryFOS: Physical sciencesEspectroscòpia nuclear[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear spectroscopyNuclear Theory (nucl-th)IsotopesNuclear Physics - TheoryPhysics::Atomic and Molecular Clustersddc:530Nuclear Physics - ExperimentPräzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNuclear Physics
researchProduct

Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure

2013

Recent results from a measurement campaign studying the isomerism in neutron-deficient Tl isotopes are presented. The measurements make use of a nuclear spectroscopy setup coupled to the high-resolution Penning-trap mass spectrometer ISOLTRAP at CERN's radioactive ion-beam facility ISOLDE. The mass values of 190,194Tl are improved and a mass-spin-state assignment is carried out. An additional mass measurement of the grandparent nuclide 198At allows the deduction of the spin-state ordering in 190Tl. As a result, the excitation energies of the isomers in both Tl isotopes are determined for the first time to Eex(194Tl)=260(15) keV and E ex(190Tl)=89(12) keV. Furthermore, this allows anchoring …

PhysicsNuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsClosure (topology)Shell (structure)ISOLTRAPMass spectrometry01 natural sciencesIon trappingISOLTRAPPenning ion trapTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesisomersddc:530Atomic physicsNuclear Experiment010306 general physicsSpectroscopyZ=82mass spectrometry
researchProduct

Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

2005

Abstract The atomic masses of 76,77,80,81,86,88 Sr and 124,129,130,131,132 Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. 76 Sr is now the heaviest N = Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus 132 Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be pr…

PhysicsNuclear and High Energy Physicsatomic masses010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryISOLTRAP01 natural sciencesISOLTRAPAtomic massNuclear physicsMasstin0103 physical sciencesIsotopes of tinNeutronstrontiumAtomic physics010306 general physicsNuclear ExperimentQuadrupole mass analyzerhigh-precision mass spectrometryHybrid mass spectrometer07.75.+h 21.10.Dr 32.10.Bi
researchProduct

A pulsed high-voltage decelerator system to deliver low-energy antiprotons

2021

International audience; The GBAR (Gravitational Behavior of Antihydrogen at Rest) experiment at CERN requires efficient deceleration of 100 keV antiprotons provided by the new ELENA synchrotron ring to synthesize antihydrogen. This is accomplished using electrostatic deceleration optics and a drift tube that is designed to switch from -99 kV to ground when the antiproton bunch is inside – essentially a charged particle “elevator” – producing a 1 keV pulse. We describe the simulation, design, construction and successful testing of the decelerator device at -92 kV on-line with antiprotons from ELENA.

Nuclear and High Energy PhysicsDrift tubeGeneral RelativityIon-optic simulationsCERN Labdrift tubeAstrophysics::High Energy Astrophysical Phenomena[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Charged-particle opticsfabrication7. Clean energy01 natural sciencesanti-p: decelerationlaw.inventionNuclear physicslaw0103 physical sciencessynchrotronPhysics::Atomic Physics010306 general physicsAntihydrogennumerical calculationsInstrumentationaccelerator: designPhysicsantihydrogenLarge Hadron Collider010308 nuclear & particles physicsHigh voltageCharged particleSynchrotron[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Pulse (physics)beam opticsAntiprotonPhysics::Accelerator Physics
researchProduct

Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

2000

Abstract The masses of Xe isotopes with 124⩾ A ⩾114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm ≈12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found.

PhysicsNuclear and High Energy PhysicsSpectrometer[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Physics::Instrumentation and Detectors010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometry01 natural sciencesISOLTRAPAtomic massIsotopes of oxygenNuclear physics0103 physical sciencesIsotopes of xenonAtomic physicsParticle PhysicsNuclear Experiment010306 general physicsQuadrupole mass analyzerHybrid mass spectrometer
researchProduct

Precision Mass Measurements of Cr58–63 : Nuclear Collectivity Towards the N=40 Island of Inversion

2018

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

PhysicsProtonIsotope010308 nuclear & particles physicsIsland of inversionNuclear TheoryAb initioNuclear structureGeneral Physics and AstronomyRenormalization group01 natural sciences7. Clean energyISOLTRAPNuclear physics0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Recent Exploits of the ISOLTRAP Mass Spectrometer

2013

Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…

Penning-trap mass spectrometryNuclear and High Energy PhysicsLarge Hadron ColliderIon beam analysisChemistry010401 analytical chemistryMeasurement of pure ion ensembles[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPMulti-reflection time-of-flight mass separator0104 chemical sciencesSecondary ion mass spectrometryNuclear physicsIon-beam analysis0103 physical sciencesBeam purificationIon trapAtomic physics010306 general physicsNuclear ExperimentInstrumentationHybrid mass spectrometer
researchProduct

Laser Spectroscopy of Neutron-Rich $^{207,208}$Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the $N=126$ Shell Cl…

2021

The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…

Nuclear Theorynucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear Theory (nucl-th)Nuclear Physics - TheoryNuclear Physics - ExperimentNuclear Experiment (nucl-ex)Präzisionsexperimente - Abteilung BlaumNuclear ExperimentNuclear ExperimentNuclear Physics
researchProduct

New developments of the in-source spectroscopy method at RILIS/ISOLDE

2013

At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…

Nuclear and High Energy PhysicsIon beamNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyISOLTRAPIonNuclear physicsIonization0103 physical sciencesPhysics::Atomic PhysicsLaser spectroscopy010306 general physicsSpectroscopyNuclear ExperimentInstrumentationHyperfine structureRresonance laser ionization010308 nuclear & particles physicsChemistryResonanceIon sourceIsotope shiftHyperfine structureAtomic physics
researchProduct

Examining the N=28 shell closure through high-precision mass measurements of Ar46–48

2020

The strength of the $N=28$ magic number in neutron-rich argon isotopes is examined through high-precision mass measurements of $^{46\text{--}48}\mathrm{Ar}$, performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. The new mass values are up to 90 times more precise than previous measurements. While they suggest the persistence of the $N=28$ shell closure for argon, we show that this conclusion has to be nuanced in light of the wealth of spectroscopic data and theoretical investigations performed with the SDPF-U phenomenological shell model interaction. Our results are also compared with ab initio calculations using the valence space in-medium similarity renormalization group and the s…

PhysicsArgonValence (chemistry)010308 nuclear & particles physicsSHELL modelchemistry.chemical_elementIsotopes of argonRenormalization groupMass spectrometry01 natural sciencesISOLTRAPchemistryAb initio quantum chemistry methods0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsPhysical Review C
researchProduct

Surveying the N=40 island of inversion with new manganese masses

2012

High-precision mass measurements of neutron-rich 57−66Mn and 61−63Fe isotopes are reported. The new mass surface shows no shell closure at N=40. In contrast, there is an increase of the two-neutron separation energy at N=38. This behavior is consistent with the onset of collectivity due to the occupation of intruder states from higher orbits, in analogy with the well known “island of inversion” around N=20. Our results indicate that the neutron-rich Mn isotopes, starting from 63Mn, are most likely within the new island of inversion. From the new mass surface, we evaluate the empirical proton-neutron interaction and the pairing gap, both playing a significant role in the structural changes i…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsIsland of inversionchemistry.chemical_elementManganeseGeophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear magnetic resonancechemistry0103 physical sciencesNuclear Physics - Experiment010306 general physicsNuclear Experiment
researchProduct

Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region

2017

We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z=79), the two long-lived nuclear states in 197At (Z=85), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for 188,190Au. The new trend of two-neutron separation energies is smoother, although it doe…

PhysicsIsotope010308 nuclear & particles physicsBinding energyNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trap01 natural sciencesISOLTRAPEffective nuclear chargeNuclear physics0103 physical sciencesNeutronIsotopes of goldNuclide010306 general physicsNuclear Experiment
researchProduct

Towards a test of the weak equivalence principle of gravity using anti-hydrogen at CERN

2016

International audience; The aim of the GBAR (Gravitational Behavior of Antimatter at Rest) experiment is to measure the free fall acceleration of an antihydrogen atom, in the terrestrial gravitational field at CERN and therefore test the Weak Equivalence Principle with antimatter. The aim is to measure the local gravity with a 1% uncertainty which can be reduced to few parts of 10-3.

Free fallGravity (chemistry)Particle physicsPhysics::General PhysicsAntimatterCERN LabGravityacceleration measurementterrestrial gravitational fieldfree fall acceleration01 natural sciencesantihydrogen: accelerationweak equivalence principle010305 fluids & plasmasparticle trapsAtomic measurementsGravitationGeneral Relativity and Quantum Cosmologyhydrogen: ionGravitational fieldLaser transitionsAtom (measure theory)0103 physical sciencesPhysics::Atomic and Molecular Clusters[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsAntihydrogenantihydrogen atomPhysicsIonsatomProductionEquivalence principle (geometric)laserequivalence principleAntimatter[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]talk: Ottawa 2016/07/10gravitation: localhydrogen ionsCoolingGravitation
researchProduct

Critical-Point Boundary for the Nuclear Quantum Phase Transition NearA=100from Mass Measurements ofKr96,97

2010

Mass measurements of (96,97)Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.

Quantum phase transitionPhysicsIsotopeSpectrometer010308 nuclear & particles physicsGeneral Physics and AstronomyIsotopes of krypton01 natural sciencesISOLTRAPCritical point (thermodynamics)0103 physical sciencesGamma spectroscopyAtomic physicsNuclear Experiment010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

2002

The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed

massaspektrometriaatomic massesXenon isotopesPhysics::Instrumentation and Detectorspenning trapNuclear Experimentradioactive ions
researchProduct

Mass measurements beyond the major r-process waiting point $^{80}$Zn

2008

High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron capture process where neutron separation energy and neutron capture Q-value are determined experimentally. As a consequence, the astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N = 50 shell closure for Z = 30 farthe…

Binding energies and massessupernovaeNucleosynthesis in novaeand other explosive environmentsFOS: Physical sciencesNuclear Physics - Experiment59<=A<=89[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experiment
researchProduct

Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure

2021

Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…

Nuclear Theorynucl-thShell (structure)FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometrynucl-ex7. Clean energy01 natural sciencesNuclear Theory (nucl-th)Atomic orbital0103 physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentPhysics010308 nuclear & particles physicsCharge (physics)Ion sourceddc:3. Good healthPairingNuclear Physics - TheoryDensity functional theoryAtomic physicsPräzisionsexperimente - Abteilung Blaum
researchProduct

Positron production using a 9 MeV electron linac for the GBAR experiment

2020

For the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN's Antiproton Decelerator (AD) facility we have constructed a source of slow positrons, which uses a low-energy electron linear accelerator (linac). The driver linac produces electrons of 9 MeV kinetic energy that create positrons from bremsstrahlung-induced pair production. Staying below 10 MeV ensures no persistent radioactive activation in the target zone and that the radiation level outside the biological shield is safe for public access. An annealed tungsten-mesh assembly placed directly behind the target acts as a positron moderator. The system produces $5\times10^7$ slow positrons per second, a performan…

safetyAntimatterNuclear and High Energy PhysicsCERN LabPhysics - Instrumentation and DetectorstungstenPositronAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectron01 natural sciences7. Clean energyLinear particle acceleratorpositron: particle source010305 fluids & plasmaselectron: pair productionNuclear physicselectron: linear acceleratorPositronPositron; Linear accelerator; Antimatter; Antihydrogen; Gravitation0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesNuclear Experiment010306 general physicsAntihydrogenphysics.ins-detInstrumentationenergy: lowantihydrogenPhysicsLarge Hadron Collidergravitation 2Instrumentation and Detectors (physics.ins-det)linear acceleratorAntiproton DeceleratorPair productionradioactivityAntimattergravitation: accelerationPhysics::Accelerator PhysicsHigh Energy Physics::Experimentperformancepositron: yieldGravitationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

2020

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…

PhysicsSpectrometerAb initioShell (structure)Closure (topology)General Physics and AstronomyRenormalization group7. Clean energy01 natural sciencesISOLTRAPIsotopes of cadmium0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutronAtomic physicsNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model c…

2019

Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…

nucl-thNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]3106ResearchInstitutes_Networks_Beacons/photon_science_instituteharmonic-oscillator basisMonte Carlo methodFOS: Physical sciencesPhoton Science Institute[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear Structure01 natural sciences7. Clean energyodd-massNuclear Theory (nucl-th)Atomic orbitalCharge radius0103 physical sciencesNuclear Physics - ExperimentDalton Nuclear InstituteNeutronneutron-deficient hgNuclear Experiment (nucl-ex)nuclear charge-distribution010306 general physicsNuclear ExperimentNuclear ExperimentHyperfine structurePhysics010308 nuclear & particles physicsGénéralitésexcited structuresstatesResearchInstitutes_Networks_Beacons/dalton_nuclear_institutehyperfine-structure13. Climate actionNuclear Physics - Theoryoblate-prolate transitionaxially deformed solutionQuadrupolemomentsDensity functional theoryAtomic physicsPräzisionsexperimente - Abteilung BlaumMagnetic dipole
researchProduct

Buffer-gas-free mass-selective ion centering in Penning traps by simultaneous dipolar excitation of magnetron motion and quadrupolar excitation for i…

2012

A new excitation scheme of the radial ion-motional modes is introduced for Penning-trap ion-cyclotron-resonance experiments. By simultaneous dipolar excitation of the magnetron motion and resonant quadrupolar excitation for the conversion between magnetron motion and cyclotron motion, a mass-selective recentering of the ions of interest is performed while all other (contaminant) ions are ejected from the trap. This new technique does not rely on the application of a buffer gas as presently used [G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L Schweikhard, H. Stolzenberg, U. Wiess, Physics Letters A 158 (1991) 247] and will thus prevent charge-exchange reactions and da…

ACCURACYBuffer gasCyclotronMotion (geometry)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP01 natural sciencesIonlaw.inventionlaw0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsInstrumentationSpectroscopyNUCLEIChemistry010401 analytical chemistryRAMSEY METHODRESONANCECondensed Matter PhysicsPenning trap0104 chemical sciencesCAPTUREDipoleOCTUPOLAR EXCITATIONSPECTROMETRYCavity magnetronMODESAtomic physicsAXIALIZATIONExcitationInternational Journal of Mass Spectrometry
researchProduct

Spectroscopy of the long-lived excited state in the neutron-deficient nuclides $^{195,197,199}$Po by precision mass measurements

2017

Direct mass measurements of the low-spin 3/2− and high-spin 13/2+ states in the neutron-deficient isotopes Po195 and Po197 were performed with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE-CERN. These measurements allow the determination of the excitation energy of the isomeric state arising from the νi13/2 orbital in Po195,197. Additionally, the excitation energy of isomeric states of lead, radon, and radium isotopes in this region were obtained from α-decay chains. These excitation energies complete the knowledge of the energy systematics in the region and confirm that the 13/2+ states remain isomeric, independent of the number of valence neutrons. Direct mass measurements of the …

FOS: Physical sciencesNuclear Physics - ExperimentPräzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear ExperimentNuclear Experiment
researchProduct

Hyperfine anomaly in gold and magnetic moments of $I^{\pi}$ $= 11/2^{−}$ gold isomers

2020

Physical review / C 101(3), 034308 (2020). doi:10.1103/PhysRevC.101.034308

Nuclear Physics - Experimentddc:530Physics::Atomic Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure530
researchProduct

Precision Mass Measurement of $^{58-63}$Cr: Nuclear Collectivity towards the $N=40$ Island of Inversion

2018

The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…

Nuclear Theory (nucl-th)Nuclear Theorynucl-thNuclear Physics - TheoryNuclear TheoryPhysics::Atomic and Molecular ClustersFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear ExperimentNuclear Experiment
researchProduct

Approaching theN=82shell closure with mass measurements of Ag and Cd isotopes

2010

Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of ${}^{112,114\ensuremath{-}124}$Ag and ${}^{114,120,122\ensuremath{-}124,126,128}$Cd, determined with relative uncertainties between $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ and $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$, resulted in significant corrections and improvements of the mass surface. In particular, the mass of $^{124}\mathrm{Ag}$ was previously unknown. In addition, other masses that had to be inferred from $Q$ values of nuclear decays and reactions have now been measured directly. The analysis includes various mass…

PhysicsNuclear reactionNuclear and High Energy Physics010308 nuclear & particles physicsQ value21.10.Dr 21.30.Fe 27.60.+jHadron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesISOLTRAPIsotopes of cadmium0103 physical sciencesIsotopes of tinNuclear Physics - ExperimentAtomic physics010306 general physicsNucleonEnergy (signal processing)Physical Review C
researchProduct

Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au

2018

Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…

Nuclear and High Energy PhysicsHadronNuclear physicsThallium nuclei[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences0103 physical sciencesddc:530Nuclear Physics - ExperimentLaser spectroscopy010306 general physicsSpin (physics)PhysicsMagnetic moment010308 nuclear & particles physicsBranching fractionLandé g-factorGold nucleiDecay spectroscopylcsh:QC1-9993. Good healthNuclear deformationPräzisionsexperimente - Abteilung BlaumAtomic physicsGround stateNucleonlcsh:PhysicsDimensionless quantity
researchProduct

Accurate masses of neutron-deficient nuclides close to

2001

Abstract Mass measurements with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN are extended to nonsurface ionizable species using newly developed ion-beam bunching devices. Masses of 179–197Hg, 196,198Pb, 197Bi, 198Po and 203At were determined with an accuracy of 1×10 −7 corresponding to δm≈20  keV. Applying a resolving power of up to 3.7×10 6 ground and isomeric states of 185,187,191,193,197Hg were separated. First experimental values for the isomeric excitation energy of 187,191Hg are obtained. A least-squares adjustment has been performed and theoretical approaches are discussed to model the observed fine structure in the binding energy.

PhysicsNuclear and High Energy PhysicsBinding energyNeutronNuclideAtomic physicsMass spectrometryPenning trapISOLTRAPAtomic massExcitationNuclear Physics A
researchProduct

Spectroscopy of the long-lived excited state in the neutron-deficient nuclides Po195,197,199 by precision mass measurements

2017

Direct mass measurements of the low-spin 3/2(-) and high-spin 13/2(+) states in the neutron-deficient isotopes Po-195 and Po-197 were performed with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE-CERN. These measurements allow the determination of the excitation energy of the isomeric state arising from the nu i(13/2) orbital in Po-195,Po-197. Additionally, the excitation energy of isomeric states of lead, radon, and radium isotopes in this region were obtained from alpha-decay chains. These excitation energies complete the knowledge of the energy systematics in the region and confirm that the 13/2(+) states remain isomeric, independent of the number of valence neutrons.

PhysicsIsotopeSpectrometer010308 nuclear & particles physics01 natural sciences7. Clean energyISOLTRAPNuclear physicsExcited state0103 physical sciencesNeutronNuclideAtomic physicsNuclear Experiment010306 general physicsSpectroscopyExcitationPhysical Review C
researchProduct

Off-line commissioning of the ISOLDE cooler

2007

International audience; Among the multiple progresses in radioactive ion beam (RIB) manipulation for physics experiments, the beam cooling and bunching in gas-filled RF traps has become a widely used technique. It is particularly well adapted to precision experiments, such as Penning trap mass spectrometry or collinear laser spectroscopy. At ISOLDE, an rf quadrupole cooler and ion buncher (RFQCB) has been designed and developed to deliver radioactive beams of improved quality among most of the on-line experiments. The results of the first off-line tests have shown that high transmission efficiencies could be achieved with different RIBs of alkali metals, as it was expected. During the later…

Nuclear and High Energy PhysicsRFQCBIon beam010308 nuclear & particles physicsChemistryNuclear engineering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesIon trappingISOLDEIonNuclear physicsEmittance0103 physical sciencesQuadrupoleTransmissionThermal emittance37.10.Rs; 37.10.Ty; 29.27.Eg010306 general physicsInstrumentationBeam (structure)
researchProduct

Extension of Penning-trap mass measurements to very short-lived nuclides

2000

Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.

PhysicsNuclear and High Energy PhysicsSpectrometerIsotope010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trap7. Clean energy01 natural sciencesISOLTRAPAtomic massNuclear physics13. Climate action0103 physical sciencesNuclear Physics - ExperimentIon trapNuclideAtomic physics010306 general physicsHybrid mass spectrometerNuclear Physics A
researchProduct

Shape coexistence in Au 187 studied by laser spectroscopy

2020

Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …

PhysicsMagnetic momentIsotope010308 nuclear & particles physicsNuclear structure01 natural sciences7. Clean energyCharge radius0103 physical sciencesPhysics::Atomic and Molecular ClustersParticleDeformation (engineering)Atomic physics010306 general physicsGround stateSpectroscopyPhysical Review C
researchProduct

Development of a PbWO 4 detector for single-shot positron annihilation lifetime spectroscopy at the GBAR experiment

2020

International audience; We have developed a PbWO 4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross section for the (anti) hydrogen formation by (anti) proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment.

PhysicsPhysics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]DetectorMeasure (physics)General Physics and Astronomy7. Clean energyIonNuclear physicsCross section (physics)[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]PACS: 78.70.Bj 41.75.Fr 36.10.DrYield (chemistry)Reflection (physics)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AntihydrogenSpectroscopyComputingMilieux_MISCELLANEOUS
researchProduct

Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line

2012

The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…

PhysicsRadioactive ion beamsHistoryLarge Hadron ColliderNuclear structureCRIS beam line[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciences010305 fluids & plasmasComputer Science ApplicationsEducationNuclear physicsBeamlineIonization0103 physical sciencesPhysics::Accelerator PhysicsCollinear resonant ionisation spectroscopyAtomic physicsNuclear Experiment010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUS
researchProduct

Trap-assisted decay spectroscopy with ISOLTRAP

2012

Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements. (C) 2012 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsRadionuclideStudies at ISOL-type facilitiesPenning trap mass spectrometers010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Trap (plumbing)Mass spectrometry01 natural sciencesISOLTRAPIonNuclear physicsTrap-assisted decay spectroscopy0103 physical sciencesIsobaric processNuclideNuclear Experiment010306 general physicsSpectroscopyInstrumentation
researchProduct

Charge radii and electromagnetic moments of At195–211

2018

Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…

PhysicsIsotope010308 nuclear & particles physicsElectron multiplierchemistry.chemical_elementCharge (physics)Mass spectrometry7. Clean energy01 natural scienceschemistry13. Climate action0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsAstatineSpectroscopyHyperfine structurePoloniumPhysical Review C
researchProduct

ISOLTRAP Mass Measurements for Weak-Interaction Studies

2005

International audience; The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed beta decays. Recent results of mass measurements on the beta emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-i…

Physicselementary particle weak interactionsParticle physicsLarge Hadron ColliderUnitarity010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixHigh Energy Physics::Phenomenology12.15.Hh 23.40.Bw 11.40.HaWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesISOLTRAPStandard ModelNuclear physicsMatrix (mathematics)Decay energy0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsbeta-decay
researchProduct

Characterization of the shape-staggering effect in mercury nuclei

2018

In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…

Quantum phase transitionPhysicsIsotope010308 nuclear & particles physicsNuclear TheoryGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3100Atomic orbital13. Climate action0103 physical sciencesAtomic nucleusQuadrupoleNuclear Physics - ExperimentNeutronNuclidePräzisionsexperimente - Abteilung BlaumAtomic physics010306 general physicsSpectroscopyNuclear Experiment
researchProduct

High-accuracy mass measurements on neutron deficient neon isotopes

2005

International audience; The atomic masses of the short-lived nuclides 17Ne and 19Ne have been measured with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The obtained mass excess for both nuclides deviates significantly from the literature value, in the case of 17Ne about 40 keV. The mass value of 17Ne can be applied for a test of the isobaric multiplet mass equation with respect to an isospin T = 3/2 quartet. In addition, both masses can contribute to the data analysis of collinear laser-spectroscopy experiments where mean-square nuclear-charge radii are determined.

Mass excessNuclear Theorychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyISOLTRAPNuclear physicsNeonnuclei with mass number 6 to 190103 physical sciencesNuclideneon010306 general physicsNuclear ExperimentPhysicsmass spectrometers010308 nuclear & particles physicsneutronsAtomic massMass formulaMass21.10.Dr 27.20.+n 29.30.-hIsotopes of neonchemistrynuclear massAtomic physics
researchProduct

Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at N = 32

2005

Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of 4 $\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.

PhysicsSurface (mathematics)Nuclear and High Energy Physics010308 nuclear & particles physicsBinding energyShell (structure)Closure (topology)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trapMass spectrometry01 natural sciencesISOLTRAPPairing0103 physical sciencesAtomic physics010306 general physicsNuclear Experiment
researchProduct