0000000000116724
AUTHOR
J. G. Cubiss
showing 32 related works from this author
High-Statistics Sub-Barrier Coulomb Excitation of $^{106,108,110}$Sn
2020
International audience; A Coulomb excitation campaign on $^{106,108,110}$Sn at 4.4–4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ∼2.8 MeV/u. More precise $(B(E2;0_{1}^{ + } \to 2_{1}^{ + }))$ values, lifetimes of states via the Doppler shift attenuation method, and new $(B(E2;0_{1}^{ + } \to 2_{x}^{ + })), (B(E2;2_{1}^{ + } \to 4_{1}^{ + }))$ and $(Q(2_{1}^{ + }))$ values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.
New collective structures in Au179 and their implications for the triaxial deformation of the Pt178 core
2022
Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure
2021
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
Coulomb Excitation of Proton-rich N=80 Isotones at HIE-ISOLDE
2020
Abstract A projectile Coulomb-excitation experiment was performed at the radioactive ion beam facility HIE-ISOLDE at CERN. The radioactive 140Nd and 142Sm ions were post accelerated to the energy of 4.62 MeV/A and impinged on a 1.45 mg/cm2-thin 208Pb target. The γ rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL. The scattered charged particles were detected by a double-sided silicon strip detector in forward direction. Experimental γ-ray intensities were used for the determination of electromagnetic transition matrix elements. Preliminary results for the reduced transition strength of the B ( M 1 ; 2 3 + → 2 1 + ) = 0.35 ( 19 ) μ N 2 of 140Nd and a firs…
Decay studies of the long-lived states in Tl-186
2020
9 pags., 12 figs., 3 tabs.
Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure
2021
Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…
Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model c…
2019
Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…
Restoring the valence-shell stabilization in Nd 140
2020
A projectile Coulomb-excitation experiment was performed at the radioactive-ion beam facility HIE-ISOLDE at CERN to obtain E2 and M1 transition matrix elements of Nd-140 using the multistep Coulomb-excitation code GOSIA. The absolute M1 strengths, B(M1; 2(2)(-) -> 2(1)(+)) = 0.033(8)mu(2)(N), B(M1 ; 2(3)(+) -> 2(1)(+)) = 0.26(-0.10)(+0.11)mu(2)(N), and B(M1; 2(4)+ -> 2(1)(+)) <0.04 mu(2)(N) identify the 2(3)(+) state as the main fragment of the one-quadrupole-phonon proton-neutron mixed-symmetry state of Nd-140. The degree of F-spin mixing in Nd-140 was quantified with the determination of the mixing matrix element VF-mix <7(-7)(-13) keV. Peer reviewed
Search for Isovector Valence-Shell Excitations in 140 Nd and 142 Sm via Coulomb excitation reactions of radioactive ion beams
2018
Projectile Coulomb excitation experiments were performed at HIE-ISOLDE at CERN with the radioactive ion beams of 140Nd and 142Sm. Ions with an energy of 4:62 MeV/A were impinging on a 1.45 mg/cm2 thick 208Pb target. The γ-rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL and scattered particles were detected by a double-sided silicon strip detector. Experimental intensities were used for the determination of electromagnetic transition matrix elements. A preliminary result of the B(M1; 2+3 → 2+1) of 140Nd and an upper limit for the case of 142Sm are revealing the main fragments of the proton-neutron mixed-symmetry 2+1;ms states.
Dealing with contaminants in Coulomb excitation of radioactive beams
2020
Abstract Data analysis of the Coulomb excitation experiment of the exotic 206Hg nucleus, recently performed at CERN’s HIE-ISOLDE facility, needs to account for the contribution to target excitation due to the strongly-present beam contaminant 130Xe. In this paper, the contamination subtraction procedure is presented.
Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au
2018
Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…
Quadrupole deformation of Xe-130 measured in a Coulomb-excitation experiment
2020
Physical review / C 102(5), 054304 (2020). doi:10.1103/PhysRevC.102.054304
α -decay branching ratio of Pt180
2020
Shape coexistence in Au 187 studied by laser spectroscopy
2020
Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …
Identification of a 6.6μs isomeric state in Ir175
2019
Population of lead isotopes in binary reactions using a Rb 94 radioactive beam
2020
8 pags., 9 figs.
Identification of sub- μs isomeric states in the odd-odd nucleus Au178
2021
The neutron-deficient gold (Z=79) isotopes in the vicinity of the neutron midshell N=104 provide prolific examples of shape coexistence and isomerism at low excitation energy. They can be probed via a number of different experimental techniques. In this study, two new isomeric states with half-lives of 294(7) and 373(9) ns have been observed in the neutron-deficient odd-odd nuclide Au178 (N=99) in an experiment at the RITU gas-filled separator at JYFL, Jyvaskyla. This result was achieved due to the use of a segmented planar germanium detector with a high efficiency at low energies. By applying the recoil-decay tagging technique, they were assigned to decay to two different long-lived α-deca…
β decay of In133 : γ emission from neutron-unbound states in Sn133
2019
Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…
Charge radii and electromagnetic moments of At195–211
2018
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…
Large shape staggering in neutron-deficient Bi isotopes
2021
The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…
In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS
2019
A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…
Characterization of the shape-staggering effect in mercury nuclei
2018
In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…
Large Shape Staggering in Neutron-Deficient Bi Isotopes
2021
New ß-decaying state in 214Bi
2021
Laser Spectroscopy of Neutron-Rich $^{207,208}$Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the $N=126$ Shell Cl…
2021
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
Identification of sub-μs isomeric states in the odd-odd nucleus 178Au
2021
The neutron-deficient gold (Z=79) isotopes in the vicinity of the neutron midshell N=104 provide prolific examples of shape coexistence and isomerism at low excitation energy. They can be probed via a number of different experimental techniques. In this study, two new isomeric states with half-lives of 294(7) and 373(9) ns have been observed in the neutron-deficient odd-odd nuclide 178Au (N=99) in an experiment at the RITU gas-filled separator at JYFL, Jyväskylä. This result was achieved due to the use of a segmented planar germanium detector with a high efficiency at low energies. By applying the recoil-decay tagging technique, they were assigned to decay to two different long-lived α-deca…
Identification of a 6.6μs isomeric state in 175Ir
2019
An experiment has been performed to study excited states in the neutron-deficient nucleus 175Ir via the use of the JUROGAM II high-purity germanium detector array and the RITU gas-filled separator at JYFL, Jyväskylä. By using isomer tagging, an isomeric state with a half-life of 6.58(15) μs has been observed in 175Ir for the first time. It has been established that the isomer decays via a 45.2 (E1)–26.1 (M1) keV cascade to new states below the previously reported ground state in 175Ir with Iπ = (5/2−). We now reassign this (5/2−) state to the isomeric state discovered in this study. peerReviewed
Competition between allowed and first-forbidden β decays of At208 and expansion of the Po208 level scheme
2021
The structure of 208Po populated through the EC/β+ decay of 208At is investigated using γ-ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed γ rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the β-decay strength of 208At is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass r…
Hyperfine anomaly in gold and magnetic moments of $I^{\pi}$ $= 11/2^{−}$ gold isomers
2020
Physical review / C 101(3), 034308 (2020). doi:10.1103/PhysRevC.101.034308
First ß-decay spectroscopy of 135In and new ß-decay branches of 134In
2021
First β -decay spectroscopy of In 135 and new β -decay branches of In 134
Detailed spectroscopy of doubly magic $^{132}$Sn
2020
The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…