0000000000007519
AUTHOR
D. V. Fedorov
Large Shape Staggering in Neutron-Deficient Bi Isotopes
Beta-decay measurements of neutron-rich thallium, lead, and bismuth by means of resonant laser ionisation
Abstract Neutron-rich thallium, lead, and bismuth isotopes were investigated at the ISOLDE facility. After mass separation and resonant laser ionisation of the produced activity, new spectroscopic data were obtained for 215,218 Bi and 215 Pb. An attempt to reach heavy thallium had to be abandoned because of a strong francium component in the beam that gave rise to a neutron background through (α,n) reactions on the aluminium walls of the experimental chamber.
Laser ion beam production at CERN-ISOLDE: New features – More possibilities
Abstract This article summarizes the current specifications and the latest features of the CERN-ISOLDE resonance ionization laser ion source (RILIS). This includes a description of the optical layout and the newly designed reference system. The ionization schemes for the laser ionized beams at ISOLDE are tabulated, including six new elements. All RILIS schemes are also made publicly available in the RILIS elements on-line database. Finally, we announce a paradigm shift in RILIS operation – the combination of a machine protection and a monitoring and control system has enabled on-call operation of the laser ion source for selected beams in 2014 and has become the standard mode of operation i…
Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …
Laser Spectroscopy of Neutron-Rich Hg207,208 Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N=126 Shell Closure
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
On-line yields obtained with the ISOLDE RILIS
The ISOLDE resonance ionization laser ion source (RILIS) allows to ionize efficiently and selectively many metallic elements. In recent yield surveys and on-line experiments with the ISOLDE RILIS we observed 23–34 Mg, 26–34 Al, 98–132 Cd, 149 Tb, 155–177 Yb, 179–200 Tl, 183–215 Pb and 188–218 Bi. The obtained yields are presented together with measured release parameters which allow to extrapolate the release efficiency towards more exotic (short-lived) nuclides of the same elements. 2002 Elsevier Science B.V. All rights reserved.
New ß-decaying state in 214Bi
Precision Mass Measurements of Cr58–63 : Nuclear Collectivity Towards the N=40 Island of Inversion
The neutron-rich isotopes $^{58-63}$Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron mid-shell region, which is a gateway to the second island of inversion around \emph{N}=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the \emph{ab initio} in-medium similarity renormalization…
Early onset of deformation in the neutron-deficient polonium isotopes
In-source laser spectroscopy has been performed at CERN-ISOLDE with the RILIS laser ion source on Po-191-204,Po-206,Po-208-211,Po-216,Po-218. New information on the beta decay of Po-199 were extracted in the process, challenging previous results. Large-scale atomic calculations were performed to extract the changes in the mean-square charge radius delta from the isotope shifts. The delta for the even-A isotopes reveal a large deviation from the spherical droplet model for N < 116.
Laser Spectroscopy of Neutron-Rich $^{207,208}$Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the $N=126$ Shell Closure
The mean-square charge radii of $^{207,208}$Hg ($Z=80, N=127,128$) have been studied for the first time and those of $^{202,203,206}$Hg ($N=122,123,126$) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic \textit{kink} in the charge radii at the $N=126$ neutron shell closure has been revealed, providing the first information on its behavior below the $Z=82$ proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and non-relativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is d…
Atomic spectroscopy studies of short-lived isotopes and nuclear isomer separation with the ISOLDE RILIS
The Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE on-line isotope separator is based on the selective excitation of atomic transitions by tunable laser radiation. Ion beams of isotopes of 20 elements have been produced using the RILIS setup. Together with the mass separator and a particle detection system it represents a tool for high-sensitive laser spectroscopy of short-lived isotopes. By applying narrow-bandwidth lasers for the RILIS one can study isotope shifts (IS) and hyperfine structure (HFS) of atomic optical transitions. Such measurements are capable of providing data on nuclear charge radii, spins and magnetic moments of exotic nuclides far from stability. Although t…
New developments of the in-source spectroscopy method at RILIS/ISOLDE
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…
Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS
Abstract The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.
The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility
Abstract This paper presents the results of an investigation into autoionizing states of atomic chromium, in the service of the resonance ionization laser ion source (RILIS): the principal ion source of the ISOLDE radioactive ion beam facility based at CERN. The multi-step resonance photo-ionization process enables element selective ionization which, in combination with mass separation, allows isotope specific selectivity in the production of radioactive ion beams at ISOLDE. The element selective nature of the process requires a multi-step “ionization scheme” to be developed for each element. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-reson…
Selective laser ionization of N≥82 indium isotopes: The new r-process nuclide 135In
Production yields and beta-decay half-lives of very neutron-rich indium isotopes were determined at CERN/ISOLDE using isobaric selectivity of a resonance-ionization laser ion-source. Beta-delayed neutron multiscaling measurements have yielded improved half-lives for 206(6)~ms $^{132}$In, 165(3)~ms $^{133}$In and 141(5)~ms $^{134}$In. With 92(10)~ms $^{135}$In, a new r-process nuclide has been identified which acts as an important `waiting-point' in the In isotopic chain for neutron densities in the range n$_n \simeq 10^{24}$--10$^{26}$ n/cm$^3$, where the r-matter flow has already passed the ${\rm A} \simeq 130$ abundance-peak region.
β-delayed fission andαdecay ofAt196
A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduce…
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…
Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region
We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z=79), the two long-lived nuclear states in 197At (Z=85), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for 188,190Au. The new trend of two-neutron separation energies is smoother, although it doe…
Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure
Combining laser spectroscopy in a Versatile Arc Discharge and Laser Ion Source, with Penning-trap mass spectrometry at the CERN-ISOLDE facility, this work reports on mean-square charge radii of neutron-rich mercury isotopes across the $N = 126$ shell closure, the electromagnetic moments of $^{207}$Hg and more precise mass values of $^{206-208}$Hg. The odd-even staggering (OES) of the mean square charge radii and the kink at $N = 126$ are analyzed within the framework of covariant density functional theory (CDFT), with comparisons between different functionals to investigate the dependence of the results on the underlying single-particle structure. The observed features are defined predomina…
Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the21+State inZn80
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a g…
Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations
Neutron-deficient Hg177-185 isotopes were studied using in-source laser resonance-ionization spectroscopy at the CERN-ISOLDE radioactive ion-beam facility in an experiment combining different detection methods tailored to the studied isotopes. These include either α-decay tagging or multireflection time-of-flight gating for isotope identification. The endpoint of the odd-even nuclear shape staggering in mercury was observed directly by measuring for the first time the isotope shifts and hyperfine structures of Hg177-180. Changes in the mean-square charge radii for all mentioned isotopes, magnetic dipole, and electric quadrupole moments of the odd-A isotopes and arguments in favor of I=7/2 s…
Measurement of the Be7(n,p) cross section at thermal energy
The Be7(n,p) cross section was measured with an ion-implanted Be7 target at a thermal neutron beam of the research reactor LVR-15 in Řež. The cross section to the ground state of Li7 is σ(n,p0)=43800±1400b and the cross section to the first excited state of Li7 is σ(n,p1)=520±260b.
Dipole and quadrupole moments of Cu73–78 as a test of the robustness of the Z=28 shell closure near Ni78
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $N\sim45…
Radium ionization scheme development: The first observed autoionizing states and optical pumping effects in the hot cavity environment
© 2018 The Authors This paper reports on resonance ionization scheme development for the production of exotic radium ion beams with the Resonance Ionization Laser Ion Source (RILIS) of the CERN-ISOLDE radioactive ion beam facility. During the study, autoionizing states of atomic radium were observed for the first time. Three ionization schemes were identified, originating from the 7s2 1S0 atomic ground state. The optimal of the identified ionization schemes involves five atomic transitions, four of which are induced by three resonantly tuned lasers. This is the first hot cavity RILIS ionization scheme to employ optical pumping effects. The details of the spectroscopic studies are described …
Hyperfine anomaly in gold and magnetic moments of $I^{\pi}$ $= 11/2^{−}$ gold isomers
Physical review / C 101(3), 034308 (2020). doi:10.1103/PhysRevC.101.034308
First ß-decay spectroscopy of 135In and new ß-decay branches of 134In
Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au
Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…
β−decay of the neutron-rich isotope215Pb
This Brief Report reports on the first observation of the β--delayed γ decay of 215Pb, feeding states in 215Bi. The 215Pb beam was produced using resonant laser ionization and mass separated at the ISOLDE-CERN on-line mass separator. This ensured clean identification of the γ rays as belonging to the decay of 215Pb or its β-decay daughters. A half-life of 147(12) s was measured for the 215Pb β decay and a level scheme for the daughter nucleus 215Bi is proposed, resulting in an extended systematics of the excited states of the neutron-rich Bi isotopes.
Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40
Physics letters / B 760, 387 - 392 (2016). doi:10.1016/j.physletb.2016.07.016
Spectroscopy of the long-lived excited state in the neutron-deficient nuclides Po195,197,199 by precision mass measurements
Direct mass measurements of the low-spin 3/2(-) and high-spin 13/2(+) states in the neutron-deficient isotopes Po-195 and Po-197 were performed with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE-CERN. These measurements allow the determination of the excitation energy of the isomeric state arising from the nu i(13/2) orbital in Po-195,Po-197. Additionally, the excitation energy of isomeric states of lead, radon, and radium isotopes in this region were obtained from alpha-decay chains. These excitation energies complete the knowledge of the energy systematics in the region and confirm that the 13/2(+) states remain isomeric, independent of the number of valence neutrons.
The Miniball spectrometer
The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are hi…
First β -decay spectroscopy of In 135 and new β -decay branches of In 134
α -decay branching ratio of Pt180
Coulomb Excitation ofCu68,70: First Use of Postaccelerated Isomeric Beams
We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2nu1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core…
Shapes ofPb192,190ground states fromβ-decay studies using the total-absorption technique
The beta decay of Pb-192,Pb-190 has been studied using the total absorption technique at the ISOLDE (CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the Pb-192,Pb-190 isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects.
Changes in nuclear structure along the Mn isotopic chain studied via charge radii
The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…
Shape coexistence in Au 187 studied by laser spectroscopy
Hyperfine-structure parameters and isotope shift of the 9/2$^−$ isomeric state in $^{187}$Au relative to $^{197}$Au for the 267.6-nm atomic transition have been measured for the first time using the in-source resonance-ionization spectroscopy technique. The magnetic dipole moment and change in the mean-square charge radius for this 9/2$^−$ isomer have been deduced. The observed large isomer shift relative to the 1/2$^+$ ground state in $^{187}$Au confirms the occurrence of the shape coexistence in $^{187}$Au proposed earlier from the analysis of the nuclear spectroscopic data and particle plus triaxial rotor calculations. The analysis of the magnetic moment supports the previously proposed …
Detailed spectroscopy of doubly magic $^{132}$Sn
The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…
RILIS-ionized mercury and tellurium beams at ISOLDE CERN
This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes…
First observation of the β-decay of neutron-rich 215Pb and 218Bi by the pulsed-release technique and resonant laser ionisation
The neutron-rich Tl, Pb and Bi isotopes are of exceptional interest to trace the evolution of single-particle levels away from the doubly magic 208Pb towards the neutron-rich side of the nuclear chart. While 208Pb is well understood in terms of the shell model, experimental data on the heavier isotopes is very scarce and it is far from clear to what extent the shell model is upheld [1]. Furthermore, large branchings ratios for β-delayed neutron emission are expected in this mass region, adding astrophysical interest to the subject [2].
β decay of In133 : γ emission from neutron-unbound states in Sn133
Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…
Charge radii and electromagnetic moments of At195–211
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…
Large shape staggering in neutron-deficient Bi isotopes
The changes in the mean-square charge radius (relative to 209Bi), magnetic dipole, and electric quadrupole moments of 187,188,189,191Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in 187,188,189Big, manifested by a sharp radius increase for the ground state of 188Bi relative to the neighboring 187,189Big. A large isomer shift was also observed for 188Bim. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were…
Structure of191Pb from α- and β-decay spectroscopy
International audience; Complementary studies of 191 Pb have been made in the β decay of 191 Bi at LISOL (CRC) and in the α decay of 195 Po at ISOLDE (CERN). Fine structures in the α decay of the low-spin and high-spin isomers of 195 Po have been fully resolved. Identification of the parent state is made possible via isomer selection based on narrowband laser frequency scanning. The α-particle and γ-ray energies have been determined with greater precision. New α-particle and γ-ray energies are identified. Branching ratios in the decay of 195 Po and 191 Pb have been examined. Structure of 191 Pb from α- and β-decay spectroscopy 2 PACS numbers: 23.20.Nx Internal conversion, 23.60.+e α decay, …
In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS
A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…
First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE
The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionize…
Characterization of the shape-staggering effect in mercury nuclei
In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nucl…
Charge radii of odd-A 191–211Po isotopes
Isotope shifts have been measured for the odd-A polonium isotopes 191–211Po and changes in the nuclear mean square charge radii δr2 have been deduced. The measurements were performed at CERN-ISOLDE using the in-source resonance-ionization spectroscopy technique. The combined analysis of these data and our recent results for even-A polonium isotopes indicates an onset of deformation already at 197,198Po, when going away from stability. This is significantly earlier than was suggested by previous theoretical and experimental studies of the polonium isotopes. Moreover and in contrast to the mercury isotopes, where a strong odd–even staggering of the charge radii of the ground states was observ…
Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE
For the first time, the laser resonance photo-ionization technique has been applied inside a FEBIAD-type ion source at an ISOL facility. This was achieved by combining the ISOLDE RILIS with the ISOLDE variant of the FEBIAD ion source (the VADIS) in a series of off-line and on-line tests at CERN. The immediate appli- cations of these developments include the coupling of the RILIS with molten targets at ISOLDE and the introduction of two new modes of FEBIAD operation: an element selective RILIS mode and a RILIS + VADIS mode for increased efficiency compared to VADIS mode operation alone. This functionality has been demonstrated off-line for gallium and barium and on-line for mercury and cadmi…
Alternative approach to populate and study the $^{229}Th$ nuclear clock isomer
A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomer's $\gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $\beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $\alpha$-decay recoil source. In this …