0000000000059914

AUTHOR

Juanjuan Zheng

Resolution enhancement in quantitative phase microscopy

Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, suc…

research product

Resolution Enhancement in Phase Microscopy: a Review

Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3-D topography in reflective samples as well as the inner structure or refractive index distribution of transparent and translucent samples. However, as in conventional optical microscopy, QPM provides either a large field of view (FOV) or a high resolution but not both. Many approaches such as oblique illumination, structured illumination and speckle illumination have been proposed to improve the spatial resolution of phase microscopy by restricting other degrees of freedom (mostly time). Therefore, the space bandwidth product (SBP) of QPM becomes enlarged. This paper aims …

research product