0000000000059997
AUTHOR
Sophie S. Müller
Biodegradable hyperbranched polyether-lipids with in-chain pH-sensitive linkages
Hyperbranched polyether-based lipids with cleavable acetal units were obtained via copolymerization of the epoxide inimer 1-(glycidyloxy)ethyl ethylene glycol ether (GEGE) and glycidol, using anionic ring-opening polymerization. Cholesterol-linear polyglycerol (Ch-linPG) was used as a macroinitiator, resulting in branched polyethers with an adjustable amount of acid-cleavable units. Random copolymerization led to Ch-P(GEGEx-co-Gy) copolymers, whereas sequential copolymerization provided access to Ch-P(GEGEx-b-Gy) amphiphiles. The amount of GEGE was varied between 8–49 mol% of the total amount of monomer units. In addition, hyperbranched polyethers with a single acetal unit were prepared usi…
Polyether-Based Lipids Synthesized with an Epoxide Construction Kit: Multivalent Architectures for Functional Liposomes
Fate of Linear and Branched Polyether-Lipids In Vivo in Comparison to Their Liposomal Formulations by 18F-Radiolabeling and Positron Emission Tomography
In this study, linear poly(ethylene glycol) (PEG) and novel linear-hyperbranched, amphiphilic polyglycerol (hbPG) polymers with cholesterol (Ch) as a lipid anchor moiety were radiolabeled with fluorine-18 via copper-catalyzed click chemistry. In vivo investigations via positron emission tomography (PET) and ex vivo biodistribution in mice were conducted. A systematic comparison to the liposomal formulations with and without the polymers with respect to their initial pharmacokinetic properties during the first hour was carried out, revealing remarkable differences. Additionally, cholesterol was directly labeled with fluorine-18 and examined likewise. Both polymers, Ch-PEG27-CH2-triazole-TEG-…
Block copolymers in giant unilamellar vesicles with proteins or with phospholipids
Biocompatible, highly water-soluble, nonionic, amphiphilic block copolymers having different hydrophobic blocks and architectures, but similar molecular size and chemical nature of the hydrophilic blocks, were investigated to check for their ability to form hybrid giant unilamellar vesicles with proteins, and for their interactions with giant unilamellar phospholipid vesicles (GUV). PGM14-b-PPO34-b-PGM14 (PGM-PPO-PGM) consists of a poly(propylene oxide) middle block and outer poly(glycerol monomethacrylate) blocks. Ch-PEG32-b-lPG18 (Ch-PEG-lPG) and Ch-PEG30-b-hbPG17 (Ch-PEG-hbPG) have a linear poly(ethylene glycol) block, linked to a cholesterol end group and to a linear (lPG) or hyperbranc…
Nanovesicles as Drug Delivery Vehicles: Liposomes and Polymersomes
Universal Concept for the Implementation of a Single Cleavable Unit at Tunable Position in Functional Poly(ethylene glycol)s
Poly(ethylene glycol) (PEG) with acid-sensitive moieties gained attention particularly for various biomedical applications, such as the covalent attachment of PEG (PEGylation) to protein therapeutics, the synthesis of stealth liposomes, and polymeric carriers for low-molecular-weight drugs. Cleavable PEGs are favored over their inert analogues because of superior pharmacodynamic and/or pharmacokinetic properties of their formulations. However, synthetic routes to acetal-containing PEGs published up to date either require enormous efforts or result in ill-defined materials with a lack of control over the molecular weight. Herein, we describe a novel methodology to implement a single acetalde…
Hydroxyfunctional oxetane-inimers with varied polarity for the synthesis of hyperbranched polyether polyols via cationic ROP
Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids
Cholesterol (Ch) linked to a linear-hyperbranched block copolymer composed of poly(ethylene glycol) (PEG) and poly(glycerol) (hbPG) was investigated for its membrane anchoring properties. Two polyether-based linear-hyperbranched block copolymers with and without a covalently attached rhodamine fluorescence label (Rho) were employed (Ch-PEG30-b-hbPG23 and Ch-PEG30-b-hbPG17-Rho). Compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with the respective polymers were measured on the Langmuir trough and the morphology development of the liquid-condensed (LC) domains was studied by epi-fluorescence microsc…
Evaluation of multifunctional liposomes in human blood serum by light scattering.
To overcome the limited functionality of "stealth" lipids based on linear poly(ethylene glycol) (PEG) chains, hyperbranched polyether-based lipids that bear multiple hydroxyl groups for further chemical modification may be a suitable replacement. This study focuses on the development and characterization of "stealth" liposomes modified with a novel hyperbranched polyglycerol lipid (cholesterol-PEG30-hbPG23). An emphasis was placed on the stability of these liposomes in comparison to those containing a linear PEG derivative (cholesterol-PEG44) directly in human blood serum, characterized via dynamic light scattering (DLS). Polymer lipid contents were varied between 0 and 30 mol %, resulting …
Click modification of multifunctional liposomes bearing hyperbranched polyether chains.
Aiming at controlled modification of liposomal surface structures, we describe a postpreparational approach for surface derivatization of a new type of multifunctional, sterically stabilized liposomes. Application of dual centrifugation (DC) resulted in high encapsulation efficiencies above 50% at very small batch sizes with a total volume of 150 μL, which were conductive to fast and efficient optimization of variegated surface modification reactions. Cholesterol-polymer amphiphiles, including complex hyperbranched polyether structures bearing 1-4 terminal alkynes, were used in DC formulations to provide steric stabilization. The alkyne moieties were explored as anchors for the conjugation …
Synthesis of Oxetane-Functional Aliphatic Polyesters via Enzymatic Polycondensation
Synthesis, characterization, and thermal properties of a series of oxetane-functional aliphatic polyesters are investigated. The incorporation of the acid-sensitive 3,3-bis(hydroxymethyl)oxetane (BHMO) into polymers is achieved by using the enzyme CALB (Candida antarctica Lipase B) as a catalyst. This mild synthetic strategy provides well-defined, oxetane-functional polyesters. The enzymatic polycondensation allows for the synthesis of a series of aliphatic polyesters containing various ratios of the difunctional monomers sebacic acid, 1,8-octanediol, and BHMO with molecular weights between 5000–9800 g mol−1 and polydispersity indices (Mw/Mn) in the range of 1.25 and 1.92. Furthermore, cros…
Orthogonal Click Conjugation to the Liposomal Surface Reveals the Stability of the Lipid Anchorage as Crucial for Targeting
Synthetic access to multiple surface decorations are a bottleneck in the development of liposomes for receptor mediated targeting. This opens a complex multiparameter space, exploration of which is severely limited in terms of sample numbers and turnaround times. Here, we unlock this technological barrier by a combination of a milligram-scale liposome formulation using dual centrifugation and orthogonal click chemistry on the liposomal surface. Application of these techniques to conceptually new amphiphilic compounds, which feature norbornene and alkyne groups at the apex of sterically stabilizing, hyperbranched polyglycerol moieties, revealed a particular influence of the membrane anchor o…
Physicochemical and Preclinical Evaluation of Spermine-Derived Surfactant Liposomes for in Vitro and in Vivo siRNA-Delivery to Liver Macrophages
Herein we report on a liposomal system for siRNA delivery consisting of cholesterol (Chol), distearoylphosphatidylcholine (DSPC), and surfactant TF (1-hydroxy-50-amino-3,4,7,10,13,16,19,22-octaoxa-37,41,45-triaza-pentacontane), a novel spermine derivative (HO-EG8-C12-spermine) which has shown improved siRNA delivery to cells in vitro and in vivo. Predominantly single-walled liposomes with reproducible sizes and moderately broad size distributions were generated with an automated extrusion device. The liposomes remained stable when prepared in the presence of siRNA at N/P ratios of 17-34. However, when mixed with human serum in equal volumes, larger aggregates in the size range of several hu…
Beyond Poly(ethylene glycol): Linear Polyglycerol as a Multifunctional Polyether for Biomedical and Pharmaceutical Applications
Polyglycerols (sometimes also called "polyglycidols") represent a class of highly biocompatible and multihydroxy-functional polymers that may be considered as a multifunctional analogue of poly(ethylene glycol) (PEG). Various architectures based on a polyglycerol scaffold are feasible depending on the monomer employed. While polymerization of glycidol leads to hyperbranched polyglycerols, the precisely defined linear analogue is obtained by using suitably protected glycidol as a monomer, followed by removal of the protective group in a postpolymerization step. This review summarizes the properties and synthetic approaches toward linear polyglycerols (linPG), which are at present mainly base…
Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers.
All polymeric chemosensitizers proposed thus far have a linear poly(ethylene glycol) (PEG) hydrophilic block. To testify whether precisely this chemical structure and architecture of the hydrophilic block is a prerequisite for chemosensitization, we tested a series of novel block copolymers containing a hyperbranched polyglycerol segment as a hydrophilic block (PPO-NG copolymers) on multi-drug-resistant (MDR) tumor cells in culture. PPO-NG copolymers inhibited MDR of three cell lines, indicating that the linear PEG can be substituted for a hyperbranched polyglycerol block without loss of the polymers' chemosensitizing activity. The extent of MDR reversal increased with the polymers affinity…
A Challenging Comonomer Pair: Copolymerization of Ethylene Oxide and Glycidyl Methyl Ether to Thermoresponsive Polyethers
Motivated by the oxygen-rich and fully amorphous structure of poly(glycidyl methyl ether) (PGME), a series of thermoresponsive poly(glycidyl methyl ether-co-ethylene oxide) copolymers P(GME-co-EO) with molecular weights in the range of 3000–20 000 g mol–1 were synthesized by the activated monomer polymerization technique. Tetraoctylammonium bromide (NOct4Br) was employed as an initiator in combination with triisobutylaluminum (i-Bu3Al) as a catalyst under mild conditions. Polyethers with varying GME content between 31 and 100 mol % were obtained. Triad sequence analysis using 13C NMR spectroscopy proved that no pronounced block structure was obtained. Differential scanning calorimetry (DSC)…