0000000000060034

AUTHOR

Robert Lauter

showing 14 related works from this author

An Operator Theoretical Approach to Enveloping ϕ* - and C* - Algebras of Melrose Algebras of Totally Characteristic Pseudodifferential Operators

1998

Let X be a compact manifold with boundary. It will be shown (Theorem 3.4) that the small Melrose algebra A≔ ϕb,cl (χ,bΩ1/2) (cf. [22], [23]) of classical, totally characteristic pseudodifferential operators carries no topology such that it is a topological algebra with an open group of invertible elements, in particular, the algebra A cannot be spectrally invariant in any C* – algebra. On the other hand, the symbolic structure of A can be extended continuously to the C* – algebra B generated by A as a subalgebra of ζ(σbL2(χ, bΩ1/2)) by a generalization of a method of Gohberg and Krupnik. Furthermore, A is densely embedded in a Frechet algebra A ⊆ B which is a ϕ* – algebra in the sense of Gr…

Symmetric algebraDiscrete mathematicsFiltered algebraPure mathematicsGeneral MathematicsDifferential graded algebraSubalgebraAlgebra representationDivision algebraCellular algebraUniversal enveloping algebraMathematicsMathematische Nachrichten
researchProduct

FREDHOLM THEORY FOR DEGENERATE PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBERED BOUNDARIES

2001

We consider the calculus Ψ*,* de(X, deΩ½) of double-edge pseudodifferential operators naturally associated to a compact manifold X whose boundary is the total space of a fibration. This fits into the setting of boundary fibration structures, and we discuss the corresponding geometric objects. We construct a scale of weighted double-edge Sobolev spaces on which double-edge pseudodifferential operators act as bounded operators, characterize the Fredholm elements in Ψ*,* de(X) by means of the invertibility of an appropriate symbol map, and describe a K-theoretical formula for the Fredholm index extending the Atiyah–Singer formula for closed manifolds. The algebra of operators of order (0, 0) i…

Pure mathematicsExact sequenceApplied MathematicsMathematical analysisFibrationFredholm integral equationOperator theoryFredholm theoryManifoldSobolev spacesymbols.namesakeMathematics::K-Theory and HomologyBounded functionsymbolsAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

Algebras of pseudodifferential operators on complete manifolds

2003

In several influential works, Melrose has studied examples of non-compact manifolds M 0 M_0 whose large scale geometry is described by a Lie algebra of vector fields V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (M;TM) on a compactification of M 0 M_0 to a manifold with corners M M . The geometry of these manifolds—called “manifolds with a Lie structure at infinity”—was studied from an axiomatic point of view in a previous paper of ours. In this paper, we define and study an algebra Ψ 1 , 0 , V ∞ ( M 0 ) \Psi _{1,0,\mathcal V}^\infty (M_0) of pseudodifferential operators canonically associated to a manifold M 0 M_0 with a Lie structure at infinity V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (…

Filtered algebraCombinatoricsGeneral MathematicsAlgebra representationCurrent algebraUniversal enveloping algebraAffine Lie algebraPoisson algebraLie conformal algebraMathematicsGraded Lie algebraElectronic Research Announcements of the American Mathematical Society
researchProduct

Invariance spectrale des algèbres d'opérateurs pseudodifférentiels

2002

We construct and study several algebras of pseudodifferential operators that are closed under holomorphic functional calculus. This leads to a better understanding of the structure of inverses of elliptic pseudodifferential operators on certain non-compact manifolds. It also leads to decay properties for the solutions of these operators. To cite this article: R. Lauter et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1095–1099.

AlgebraOperator algebraBanach algebraFredholm operatorHolomorphic functional calculusHolomorphic functionGeneral MedicineOperator theoryFréchet algebraDifferential operatorMathematicsComptes Rendus Mathematique
researchProduct

On the Existence and Structure of Ψ*-Algebras of Totally Characteristic Operators on Compact Manifolds with Boundary

1999

As a contribution to the pseudodifferential analysis on manifolds with singularities we construct for each smooth, compact manifold X with boundary a Ψ*-algebra A(b)∞(X, bΩ1/2)⊆L(ϱbL2(X, bΩ1/2)) containing the algebra Ψ0b, cl(X, bΩ1/2) of totally characteristic pseudodifferential operators introduced by Melrose [25] in 1981 as a dense subalgebra; further, there is a homomorphism τ(b)A: A(b)∞(X, bΩ1/2)→Q(b)Ψ characterizing the Fredholm property of a∈A(b)∞(X, bΩ1/2) by means of the invertibility of τ(b)A(a)∈Q(b)Ψ, where Q(b)Ψ is an algebra of C∞-symbols reflecting the smooth structure of the manifold X. The Fredholm inverses of Fredholm operators in A(b)∞(X, bΩ1/2) are again in the algebra A(…

Pure mathematicsGlobal analysisMathematical analysisSpectrum (functional analysis)SubalgebraStructure (category theory)Boundary (topology)HomomorphismSmooth structureManifoldAnalysisMathematicsJournal of Functional Analysis
researchProduct

SPECTRAL INVARIANCE FOR CERTAIN ALGEBRAS OF PSEUDODIFFERENTIAL OPERATORS

2001

We construct algebras of pseudodifferential operators on a continuous family groupoid G that are closed under holomorphic functional calculus, contain the algebra of all pseudodifferential operators of order 0 on G as a dense subalgebra, and reflect the smooth structure of the groupoid G, when G is smooth. As an application, we get a better understanding on the structure of inverses of elliptic pseudodifferential operators on classes of non-compact manifolds. For the construction of these algebras closed under holomorphic functional calculus, we develop three methods: one using two-sided semi-ideals, one using commutators, and one based on Schwartz spaces on the groupoid.

Mathematics::Operator AlgebrasPseudodifferential operatorsGeneral Mathematics010102 general mathematicsMathematics - Operator Algebras01 natural sciencesMathematics - Spectral TheoryAlgebraMathematics Subject ClassificationOperator algebraMathematics::K-Theory and Homology0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsOperator Algebras (math.OA)Construct (philosophy)Spectral Theory (math.SP)Mathematics::Symplectic GeometryMathematicsJournal of the Institute of Mathematics of Jussieu
researchProduct

Analysis of geometric operators on open manifolds: A groupoid approach

2001

The first five sections of this paper are a survey of algebras of pseudodifferential operators on groupoids. We thus review differentiable groupoids, the definition of pseudodifferential operators on groupoids, and some of their properties. We use then this background material to establish a few new results on these algebras, results that are useful for the analysis of geometric operators on non-compact manifolds and singular spaces. The first step is to establish that the geometric operators on groupoids are in our algebras. This then leads to criteria for the Fredholmness of geometric operators on suitable non-compact manifolds, as well as to an inductive procedure to study their essentia…

Pure mathematicsSpectral theoryMathematics::Operator Algebras010102 general mathematicsMathematical analysisSpectral geometryFinite-rank operatorOperator theoryCompact operator01 natural sciencesQuasinormal operatorSemi-elliptic operatorElliptic operatorMathematics::K-Theory and Homology0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Symplectic GeometryMathematics
researchProduct

On spectra of geometric operators on open manifolds and differentiable groupoids

2001

We use a pseudodifferential calculus on differentiable groupoids to obtain new analytical results on geometric operators on certain noncompact Riemannian manifolds. The first step is to establish that the geometric operators belong to a pseudodifferential calculus on an associated differentiable groupoid. This then leads to Fredholmness criteria for geometric operators on suitable noncompact manifolds, as well as to an inductive procedure to compute their essential spectra. As an application, we answer a question of Melrose on the essential spectrum of the Laplace operator on manifolds with multicylindrical ends.

Discrete mathematicsPure mathematicsHigher-dimensional algebraMathematics::Operator AlgebrasGeneral MathematicsEssential spectrumMathematics::Spectral TheoryOperator theoryCompact operatorQuasinormal operatorMathematics::K-Theory and HomologyDouble groupoidMathematics::Differential GeometryDifferentiable functionMathematics::Symplectic GeometryLaplace operatorMathematicsElectronic Research Announcements of the American Mathematical Society
researchProduct

The length of $C^\ast $-algebras of $\mathrm {b}$-pseudodifferential operators

1999

Pure mathematicsPseudodifferential operatorsApplied MathematicsGeneral MathematicsArithmeticOperator theoryMathematicsProceedings of the American Mathematical Society
researchProduct

An index formula on manifolds with fibered cusp ends

2002

We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of t…

Mathematics - Differential GeometryCusp (singularity)Pure mathematics58J40 58J20 58J28Boundary (topology)Fibered knotCohomologyManifoldEta invariantOperator (computer programming)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsFiber bundleGeometry and TopologyMathematics
researchProduct

Complex powers and non-compact manifolds

2002

We study the complex powers $A^{z}$ of an elliptic, strictly positive pseudodifferential operator $A$ using an axiomatic method that combines the approaches of Guillemin and Seeley. In particular, we introduce a class of algebras, ``extended Weyl algebras,'' whose definition was inspired by Guillemin's paper on the subject. An extended Weyl algebra can be thought of as an algebra of ``abstract pseudodifferential operators.'' Many algebras of pseudodifferential operators are extended Weyl algebras. Several results typical for algebras of pseudodifferential operators (asymptotic completeness, construction of Sobolev spaces, boundedness between apropriate Sobolev spaces, >...) generalize to…

Class (set theory)Applied Mathematicsmedia_common.quotation_subjectMathematics - Operator AlgebrasAxiomatic systemMathematics::Spectral TheoryInfinityManifoldAlgebraSobolev spaceMathematics - Spectral TheoryOperator (computer programming)Mathematics - Analysis of PDEsCompleteness (order theory)FOS: MathematicsOperator Algebras (math.OA)Spectral Theory (math.SP)Mathematics::Symplectic GeometryAnalysisEigenvalues and eigenvectorsAnalysis of PDEs (math.AP)media_commonMathematics
researchProduct

Pseudodifferential operators on manifolds with a Lie structure at infinity

2003

to appear in Anal. Math.; Several examples of non-compact manifolds $M_0$ whose geometry at infinity is described by Lie algebras of vector fields $V \subset \Gamma(TM)$ (on a compactification of $M_0$ to a manifold with corners $M$) were studied by Melrose and his collaborators. In math.DG/0201202 and math.OA/0211305, the geometry of manifolds described by Lie algebras of vector fields -- baptised "manifolds with a Lie structure at infinity" there -- was studied from an axiomatic point of view. In this paper, we define and study the algebra $\Psi_{1,0,\VV}^\infty(M_0)$, which is an algebra of pseudodifferential operators canonically associated to a manifold $M_0$ with the Lie structure at …

Mathematics - Differential GeometryPure mathematicsVector algebraRiemannian geometry01 natural sciencessymbols.namesakeMathematics (miscellaneous)Mathematics - Analysis of PDEs0103 physical sciencesLie algebraFOS: MathematicsCompactification (mathematics)0101 mathematicsMathematics010102 general mathematicsHigh Energy Physics::PhenomenologyRiemannian manifoldDifferential operatorCompact operatorAlgebraOperator algebraDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsStatistics Probability and Uncertainty[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Analysis of PDEs (math.AP)
researchProduct

Homology of pseudodifferential operators on manifolds with fibered cusps

2003

The Hochschild homology of the algebra of pseudodifferential operators on a manifold with fibered cusps, introduced by Mazzeo and Melrose, is studied and computed using the approach of Brylinski and Getzler. One of the main technical tools is a new convergence criterion for tri-filtered half-plane spectral sequences. Using trace-like functionals that generate the 0 0 -dimensional Hochschild cohomology groups, the index of a fully elliptic fibered cusp operator is expressed as the sum of a local contribution of Atiyah-Singer type and a global term on the boundary. We announce a result relating this boundary term to the adiabatic limit of the eta invariant in a particular case.

Computer Science::Machine LearningHochschild homologyApplied MathematicsGeneral MathematicsFibered knotHomology (mathematics)Computer Science::Digital LibrariesCohomologyManifoldAlgebraStatistics::Machine LearningElliptic operatorEta invariantMathematics::K-Theory and HomologySpectral sequenceComputer Science::Mathematical SoftwareMathematicsTransactions of the American Mathematical Society
researchProduct

Pseudodifferential Analysis on Manifolds with Boundary — a Comparison of b-Calculus and Cone Algebra

2001

We establish a relation between two different approaches to a complete pseudodifferential analysis of totally characteristic or Fuchs type operators on compact manifolds with boundary respectively conical singularities: Melrose’s (overblown) b-calculus and Schulze’s cone algebra. Though quite different in their definition, we show that these two pseudodifferential calculi basically contain the same operators.

AlgebraGlobal analysisCone (topology)Mathematics::K-Theory and HomologyRicci-flat manifoldBoundary (topology)Gravitational singularityConical surfaceMathematics::Spectral TheoryType (model theory)MathematicsPoisson algebra
researchProduct