6533b838fe1ef96bd12a5093

RESEARCH PRODUCT

An index formula on manifolds with fibered cusp ends

Sergiu MoroianuRobert Lauter

subject

Mathematics - Differential GeometryCusp (singularity)Pure mathematics58J40 58J20 58J28Boundary (topology)Fibered knotCohomologyManifoldEta invariantOperator (computer programming)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsFiber bundleGeometry and TopologyMathematics

description

We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of the Atiyah-Singer form in the interior minus the adiabatic limit of the eta invariant of the restriction of the operator to the boundary.

https://dx.doi.org/10.48550/arxiv.math/0212239