Search results for "58J40"

showing 3 items of 3 documents

Spectra for Semiclassical Operators with Periodic Bicharacteristics in Dimension Two

2014

We study the distribution of eigenvalues for selfadjoint $h$--pseudodifferential operators in dimension two, arising as perturbations of selfadjoint operators with a periodic classical flow. When the strength $\varepsilon$ of the perturbation is $\ll h$, the spectrum displays a cluster structure, and assuming that $\varepsilon \gg h^2$ (or sometimes $\gg h^{N_0}$, for $N_0 >1$ large), we obtain a complete asymptotic description of the individual eigenvalues inside subclusters, corresponding to the regular values of the leading symbol of the perturbation, averaged along the flow.

Mathematics - Spectral Theory35P20 35Q40 35S05 37J35 37J45 58J40Mathematics - Analysis of PDEsDimension (vector space)General MathematicsFOS: MathematicsSemiclassical physicsMathematics::Spectral TheorySpectral Theory (math.SP)Spectral lineAnalysis of PDEs (math.AP)MathematicsMathematical physicsInternational Mathematics Research Notices
researchProduct

Analytic Bergman operators in the semiclassical limit

2018

Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.

Pure mathematicsadjoint operatorsMicrolocal analysis32A2501 natural sciences[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Limit (mathematics)Bergman projectionComplex Variables (math.CV)[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsBergman kernelMathematicsasymptotic expansionweighted L2-estimates58J40[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Mathematical Physics (math-ph)16. Peace & justiceFunctional Analysis (math.FA)Mathematics - Functional Analysisasymptoticstheoremkernelanalytic pseudodifferential operator010307 mathematical physicsAsymptotic expansion47B35classical limitAnalysis of PDEs (math.AP)Toeplitz operatorGeneral Mathematics70H15Holomorphic functionFOS: Physical sciencesSemiclassical physicsKähler manifold[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]analytic symbolsMathematics - Analysis of PDEskahler-metrics0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematics32W25space35A27Kähler manifoldmicrolocal analysisToeplitz operatorquantizationsemiclassical analysis
researchProduct

An index formula on manifolds with fibered cusp ends

2002

We consider a compact manifold whose boundary is a locally trivial fiber bundle and an associated pseudodifferential algebra that models fibered cusps at infinity. Using trace-like functionals that generate the 0-dimensional Hochschild cohomology groups, we express the index of a fully elliptic fibered cusp operator as the sum of a local contribution from the interior and a term that comes from the boundary. This answers the index problem formulated by Mazzeo and Melrose. We give a more precise answer in the case where the base of the boundary fiber bundle is the circle. In particular, for Dirac operators associated to a "product fibered cusp metric", the index is given by the integral of t…

Mathematics - Differential GeometryCusp (singularity)Pure mathematics58J40 58J20 58J28Boundary (topology)Fibered knotCohomologyManifoldEta invariantOperator (computer programming)Differential Geometry (math.DG)Mathematics::K-Theory and HomologyFOS: MathematicsFiber bundleGeometry and TopologyMathematics
researchProduct