0000000000060152
AUTHOR
Vicente Fornés
Ship-in-a-bottle synthesis of triphenylamine inside faujasite supercages and generation of the triphenylamminium radical ion
Abstract The ship-in-a-bottle synthesis of triphenylamine encapsulated within basic X zeolite has been accomplished by reacting sodium diphenylamide with bromobenzene in the presence of a bifunctional palladium (Hartwig–Buchwald conditions). The presence of incarcerated triphenylamine was demonstrated by dissolving the zeolite with concentrated HF and analyzing the organic material in the dichloromethane extract. Laser flash photolysis (266 nm) gives rise to the generation of triphenylamminium radical cation detected as a transient species decaying in hundreds of microseconds. Upon repetitive cyclic voltammograms, zeolite encapsulated triphenylamine shows a reversible oxidation–reduction pr…
Preparation and conductivity of PEDOT encapsulated inside faujasites
Poly[3,4-(ethylenedioxy)thiophene] (PEDOT) encapsulated inside the faujasite micropores has been prepared by polymerization of the monomer in partially Fe-exchanged faujasites. Faujasites containing PEDOT within the interior exhibit notable electrical conductivity compared to plain faujasite. This conductivity is attributed to the presence of polarons that have been detected by EPR spectroscopy.
Catalytic activity of large-pore high Si/Al zeolites: Cracking of heptane on H-Beta and dealuminated HY zeolites
Abstract The catalytic activity, selectivity, catalyst decay, thermal and hydrothermal stability, and acidity of H-Beta and HY zeolites with Si Al ratios of 7.5 and 10, respectively, have been studied during cracking of n-heptane at 450 °C and atmospheric pressure. It has been found that the H-Beta zeolite is more active and decays more slowly than HY. H-Beta presents a higher steric hindrance for dibranched molecules and therefore its open structure should be smaller than that of HY. A lower hydrogen transfer activity and hydrothermal stability is observed for H-Beta in comparison with the corresponding HY.
Enantioselective epoxidation of olefins with molecular oxygen catalyzed by gold(III): A dual pathway for oxygen transfer
Abstract A chiral gold(III) complex has been prepared that performs the epoxidation of olefins in the presence of O 2 , PhIO, or bleach. Catalytic experiments with 18 O show that O 2 is activated on the catalyst and can be directly incorporated into the epoxide through a non-radical mechanism that probably involves formation of gold, oxo, or peroxo species. In addition to this, there is a parallel radical mechanism operating that yields α , β -unsaturated ketones and alcohols as subproducts. Electrochemical and UV–Vis experiments confirmed the occurrence of a Au(III)/Au(I) redox cycle during the catalytic epoxidation in a mechanism sustained by molecular oxygen.
The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries
Abstract Mixing of aqueous suspensions of delaminated NiMn layered double hydroxide (LDH) and graphene oxide leads to the instantaneous precipitation of a hybrid material that after calcination under inert atmosphere at 450 °C leads to Ni6MnO8 nanoparticles deposited on larger reconstituted graphene sheets. This material exhibits electrical conductivity similar to graphite, superparamagnetism and can be used as an anode for Li-ion batteries. A maximum capacity value of 1030 mA h g−1 was found during the first discharge, and capacity values higher than 400 mA h g−1 were still achieved after 10 cycles. The methodology used here should allow the preparation of a large variety of hybrid graphen…
Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites.
[EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO2. Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene.
Ship-in-a-Bottle Synthesis of a Large Guest Occupying Two Y Zeolite Neighbour Supercages: Characterisation and Photocatalytic Activity of the Encapsulated Bipyrylium Ion
In a series of papers we reported the ship-in-a-bottle synthesis, photochemical properties and photocatalytic applications of 2,4,6-triphenylpyrylium cation (TP ) encapsulated inside the cavities of large pore zeolites Y and Beta. 2] The identity of encapsulated TP was then confirmed spectroscopically, particularly by the match of the IR spectra of the encapsulated organic material and that of the tetrafluoroborate solid of TP (TPBF4). In addition, the electrochemical response of zeolite Y encapsulated TP (TP@Y) consisted of a reversible single reduction process taking place at the same redox potential as that measured for TPBF4 solutions. Encapsulation of TP has a dramatic influence on its…
V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase
Well-organised V-containing MCM-41 and -48 (0.3‐1 wt.% of V content) have been synthesised by one-pot synthesis or by grafting using VOSO4 or VOCl3 as V sources, respectively. The samples before and after the calcination step have been characterised by several physicochemical techniques (Ar and N2 adsorption, XRD, diffuse reflectance-UV‐VIS (DR-UV‐VIS) spectroscopy, temperature-programmed reduction). It was found that V species in the as-prepared catalysts were mainly as vanadyl ions (VO 2C ), while highly dispersed V 5C species with tetrahedral coordination were observed in the calcined materials. The catalytic behaviour of the calcined materials for the gas phase oxidation of propane has …
Cracking behavior of zeolites with connected 12- and 10-member ring channels: The influence of pore structure on product distribution
n-Heptane has been cracked on a CIT-1 zeolite which has connected 12- and 10-member ring (MR) channels, and its behavior was compared with that of MCM-22 with nonconnected 12- and 10-MR channels, and SSZ-24 and BETA with unidirectional and tridirectional 12-MR channels, respectively. The kinetic rate constant is highest for CIT-1, and the decay constant is lowest. From the selectivity point of view, its behavior can be better represented by a system with large cavities (the intersections between the 12- and 10-MR) connected by windows. This gives a behavior typical of that of large pore zeolites. CIT-1 produces a remarkably high selectivity toi-C4, and specially to isobutane. This zeolite s…
ChemInform Abstract: Catalytic Activity of Large-Pore High Si/Al Zeolites: Cracking of Heptane on H-Beta and Dealuminated HY Zeolites
Abstract The catalytic activity, selectivity, catalyst decay, thermal and hydrothermal stability, and acidity of H-Beta and HY zeolites with Si Al ratios of 7.5 and 10, respectively, have been studied during cracking of n-heptane at 450 °C and atmospheric pressure. It has been found that the H-Beta zeolite is more active and decays more slowly than HY. H-Beta presents a higher steric hindrance for dibranched molecules and therefore its open structure should be smaller than that of HY. A lower hydrogen transfer activity and hydrothermal stability is observed for H-Beta in comparison with the corresponding HY.
Comparison of the activity, selectivity and decay properties of lay and hyultrastable zeolites during the cracking of alkanes
Abstract The cracking of n-heptane on LaY ultrastable zeolite has been studied in a continuous glass flow reactor, at atmospheric pressure, up to 470°C. The initial selectivity to cracking, isomerization and disproportionation, kinetic rate constants, activation energies and decay parameters have been calculated and compared with those obtained using a HY ultrastable zeolite as a catalyst. It has been found that the HY ultrastable zeolite is about 7 times more active for cracking, and about 10 times more active for isomerization and disproportionation than the LaY ultrastable zeolite. The protolytic to β-cracking ratio is higher for the HY ultrastable zeolite. The deactivation takes place b…