0000000000060159

AUTHOR

Vladimir Lobaskin

showing 3 related works from this author

Electrostatic Interactions Between Colloidal Particles

2020

Materials scienceColloidal particleChemical physicsElectrostatics
researchProduct

Electrophoresis of colloidal dispersions in the low-salt regime

2007

We study the electrophoretic mobility of spherical charged colloids in a low-salt suspension as a function of the colloidal concentration. Using an effective particle charge and a reduced screening parameter, we map the data for systems with different particle charges and sizes, including numerical simulation data with full electrostatics and hydrodynamics and experimental data for latex dispersions, on a single master curve. We observe two different volume fraction-dependent regimes for the electrophoretic mobility that can be explained in terms of the static properties of the ionic double layer.

ElectrophoresisQuantitative Biology::BiomoleculesDrift velocityMaterials scienceLatexGeneral Physics and AstronomyIonic bondingCharge densityFOS: Physical sciencesCondensed Matter - Soft Condensed MatterElectrostaticsElectric chargeChemistry Techniques AnalyticalCondensed Matter::Soft Condensed MatterColloidElectrophoresissymbols.namesakeModels ChemicalChemical physicssymbolsSoft Condensed Matter (cond-mat.soft)Computer SimulationSaltsColloidsDebye
researchProduct

Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations

2020

The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure–function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at mol…

MultiscaleInterface interactionsComputer scienceIn silicorare-event method02 engineering and technologyMolecular dynamics01 natural sciencesconstant-pH simulationArticleStructure-Activity RelationshipGPCRruokafoods0103 physical sciencesComputer Simulationcomputer simulationssimulointiravintoaineetProtein-sugar interactionsConstant pH simulationfood proteintilastolliset mallit2. Zero hungerMolecular interactionsCoarse graining010304 chemical physicsQSARFood proteinmolecular dynamicRare-event methodsexperiments021001 nanoscience & nanotechnologyToolboxfysikaaliset ominaisuudetkemialliset ominaisuudetStructure and functionsimulation food carbohydrates pHFoodcoarse grainingmolecular interactionEmulsionsDietary ProteinsproteiinitBiochemical engineeringmaku (aineen ominaisuudet)0210 nano-technologyfysiologiset vaikutuksetFood ScienceAnnual Review of Food Science and Technology
researchProduct