0000000000061053
AUTHOR
A Rusakova
LiF crystals irradiated with 150MeV Kr ions: Peculiarities of color center creation and thermal annealing
Abstract Color centers in LiF crystals are studied under irradiation at room temperature with 150 MeV Kr ions in the fluence (Φ) range of 1010–1014 ions/cm2 with a beam current density of 10, 50, and 100 nA/cm2, corresponding to flux of 4.46 × 109, 2.23 × 1010 and 4.46 × 1010 ions/(cm2 × s), respectively. At Φ ⩾ 3 × 1012 ions/cm2 besides F and Fn centers also charged F 3 + centers are created. Thermal annealing of irradiated LiF crystals with Φ ⩾ 1013 ions/cm2 at 400 K leads to a decrease of F centers (due to annihilation with H centers) and an enhancement of complex Fn color centers (neutral and charged) due to interaction with thermally activated anion vacancies. Annealing LiF crystals at…
Color centers and structural damage in LiF induced by 150 MeV Kr ions
Color centers and evolution of structure defects were investigated in LiF crystals irradiated at room temperature with 150 MeV 84Kr ions with a beam current of 10nA/cm2 in the fluence range 1011 - 1014 ions/cm2 at the cyclotron accelerator DC-60 (Astana, Kazakhstan). At the fluence of 1011 ions/cm2, SEM imaging revealed mainly formation of etchable ion tracks. Above this fluence, severe structural modifications in the irradiated layer were observed which include the ion-induced formation of dislocations and grains with nano-scale dimensions. The role of fluence in the concentration of electronic color centers and structural modifications is discussed.
Modification of LiF structure by irradiation with swift heavy ions under oblique incidence
The structural modifications of LiF irradiated with swift heavy ions under oblique angles have been investigated using AFM, SEM, chemical etching, nanoindentation and optical absorption spectroscopy. LiF crystals were irradiated under incidence angles of 30 and 70 degrees with 2.2 GeV Au (fluence 57?l011 ions-cm2) and 150 MeV Kr ions (fluence 1012?1014 ions?cm?2). Structural study on sample cross-sections shows that two damage regions ? (1) nanostructured zone and (2) dislocation ? rich zone, which are typical for irradiations at normal incidence, appear also in samples irradiated under oblique angles. However in the latter case a more complex structure is formed that leads to stronger ion-…