0000000000061336

AUTHOR

Un Young Kim

showing 2 related works from this author

Banach spaces of general Dirichlet series

2018

Abstract We study when the spaces of general Dirichlet series bounded on a half plane are Banach spaces, and show that some of those classes are isometrically isomorphic between themselves. In a precise way, let { λ n } be a strictly increasing sequence of positive real numbers such that lim n → ∞ ⁡ λ n = ∞ . We denote by H ∞ ( λ n ) the complex normed space of all Dirichlet series D ( s ) = ∑ n b n λ n − s , which are convergent and bounded on the half plane [ Re s > 0 ] , endowed with the norm ‖ D ‖ ∞ = sup Re s > 0 ⁡ | D ( s ) | . If (⁎) there exists q > 0 such that inf n ⁡ ( λ n + 1 q − λ n q ) > 0 , then H ∞ ( λ n ) is a Banach space. Further, if there exists a strictly increasing sequ…

SequenceApplied Mathematics010102 general mathematicsBanach space01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeBounded functionsymbolsLinear independence0101 mathematicsPositive real numbersGeneral Dirichlet seriesAnalysisDirichlet seriesMathematicsNormed vector spaceJournal of Mathematical Analysis and Applications
researchProduct

A non-linear Bishop–Phelps–BollobÁs type theorem

2018

CombinatoricsNonlinear systemGeneral Mathematics010102 general mathematics0103 physical sciences010307 mathematical physics0101 mathematicsType (model theory)01 natural sciencesMathematicsThe Quarterly Journal of Mathematics
researchProduct