0000000000061433
AUTHOR
Sancho Salcedo-sanz
Support vector machines in engineering: an overview
This paper provides an overview of the support vector machine SVM methodology and its applicability to real-world engineering problems. Specifically, the aim of this study is to review the current state of the SVM technique, and to show some of its latest successful results in real-world problems present in different engineering fields. The paper starts by reviewing the main basic concepts of SVMs and kernel methods. Kernel theory, SVMs, support vector regression SVR, and SVM in signal processing and hybridization of SVMs with meta-heuristics are fully described in the first part of this paper. The adoption of SVMs in engineering is nowadays a fact. As we illustrate in this paper, SVMs can …
Long-term persistence, invariant time scales and on-off intermittency of fog events
Abstract In this work we study different characteristics of fog long-term persistence, in events with different physical formation mechanisms. Specifically, we focus on the characterization of fog long-term persistence from observational data, by means of a Detrended Fluctuation Analysis (DFA) of its associated low-visibility time series. We analyze fog events with radiation and orographic underlying physical formation mechanisms, and identify a two-range pattern of long-term persistence. Our analysis leads to the emergence of a characteristic time, τ∗, at the crossover point between different scaling exponents in the DFA, independent of the time scale at which the fog event is studied. We …
Hybrid Genetic Algorithms in Data Mining Applications
Genetic algorithms (GAs) are a class of problem solving techniques which have been successfully applied to a wide variety of hard problems (Goldberg, 1989). In spite of conventional GAs are interesting approaches to several problems, in which they are able to obtain very good solutions, there exist cases in which the application of a conventional GA has shown poor results. Poor performance of GAs completely depends on the problem. In general, problems severely constrained or problems with difficult objective functions are hard to be optimized using GAs. Regarding the difficulty of a problem for a GA there is a well established theory. Traditionally, this has been studied for binary encoded …
Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources
This paper reviews the most important information fusion data-driven algorithms based on Machine Learning (ML) techniques for problems in Earth observation. Nowadays we observe and model the Earth with a wealth of observations, from a plethora of different sensors, measuring states, fluxes, processes and variables, at unprecedented spatial and temporal resolutions. Earth observation is well equipped with remote sensing systems, mounted on satellites and airborne platforms, but it also involves in-situ observations, numerical models and social media data streams, among other data sources. Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant i…