Fast Approximated Discriminative Common Vectors Using Rank-One SVD Updates
An efficient incremental approach to the discriminative common vector (DCV) method for dimensionality reduction and classification is presented. The proposal consists of a rank-one update along with an adaptive restriction on the rank of the null space which leads to an approximate but convenient solution. The algorithm can be implemented very efficiently in terms of matrix operations and space complexity, which enables its use in large-scale dynamic application domains. Deep comparative experimentation using publicly available high dimensional image datasets has been carried out in order to properly assess the proposed algorithm against several recent incremental formulations.
A Linear Cost Algorithm to Compute the Discrete Gabor Transform
In this paper, we propose an alternative efficient method to calculate the Gabor coefficients of a signal given a synthesis window with a support of size much lesser than the length of the signal. The algorithm uses the canonical dual of the window (which does not need to be calculated beforehand) and achieves a computational cost that is linear with the signal length in both analysis and synthesis. This is done by exploiting the block structure of the matrices and using an ad hoc Cholesky decomposition of the Gabor frame matrix.
Metagenomic dynamics in Olea europaea after root damage and Verticillium dahliae infection
AbstractThe olive tree is of particular economic interest in the Mediterranean basin. Researchers have conducted several studies on one of the most devastating disorders affecting this tree, the Verticillium wilt of olive, which causes significant economic damage in numerous areas of this crop. We have analyzed the temporal metagenomic samples of a transcriptomic study in Olea europaea roots and leaves after root-damage and after a root Verticillium dahliae infection (Jimenez-Ruiz et al. 2017). Our results indicate that this infection, although led by Verticillium, is driven not by a single species but by a polymicrobial community, including their natural endophytes, which acts as a consort…
Incremental Generalized Discriminative Common Vectors for Image Classification.
Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without th…
Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds
A set of topological descriptors has been used to discriminate between antibacterial and nonantibacterial drugs. Topological descriptors are simple integers calculated from the molecular structure represented in SMILES format. The methods used for antibacterial activity discrimination were linear discriminant analysis (LDA) and artificial neural networks of a multilayer perceptron (MLP) type. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval of the discriminant function and the output value of the neural network versus these values. Pharmacological distribution diagrams (PDD) were used as a visualizing technique for the i…
An Empirical Evaluation of Common Vector Based Classification Methods and Some Extensions
An empirical evaluation of linear and kernel common vector based approaches has been considered in this work. Both versions are extended by considering directions (attributes) that carry out very little information as if they were null. Experiments on different kinds of data confirm that using this as a regularization parameter leads to usually better (and never worse) results than the basic algorithms.
Learning Improved Feature Rankings through Decremental Input Pruning for Support Vector Based Drug Activity Prediction
The use of certain machine learning and pattern recognition tools for automated pharmacological drug design has been recently introduced. Different families of learning algorithms and Support Vector Machines in particular have been applied to the task of associating observed chemical properties and pharmacological activities to certain kinds of representations of the candidate compounds. The purpose of this work, is to select an appropriate feature ordering from a large set of molecular descriptors usually used in the domain of Drug Activity Characterization. To this end, a new input pruning method is introduced and assessed with respect to commonly used feature ranking algorithms.
Null Space Based Image Recognition Using Incremental Eigendecomposition
An incremental approach to the discriminative common vector (DCV) method for image recognition is considered. Discriminative projections are tackled in the particular context in which new training data becomes available and learned subspaces may need continuous updating. Starting from incremental eigendecomposition of scatter matrices, an efficient updating rule based on projections and orthogonalization is given. The corresponding algorithm has been empirically assessed and compared to its batch counterpart. The same good properties and performance results of the original method are kept but with a dramatic decrease in the computation needed.
Discrimination and selection of new potential antibacterial compounds using simple topological descriptors.
Abstract The aim of the work was to discriminate between antibacterial and non-antibacterial drugs by topological methods and to select new potential antibacterial agents from among new structures. The method used for antibacterial activity selection was a linear discriminant analysis (LDA). It is possible to obtain a QSAR interpretation of the information contained in the discriminant function. We make use of the pharmacological distribution diagrams (PDDs) as a visualizing technique for the identification and selection of new antibacterial agents.
Drug Activity Characterization Using One-Class Support Vector Machines with Counterexamples
The problem of detecting chemical activity in drugs from its molecular description constitutes a challenging and hard learning task. The corresponding prediction problem can be tackled either as a binary classification problem (active versus inactive compounds) or as a one class problem. The first option leads usually to better prediction results when measured over small and fixed databases while the second could potentially lead to a much better characterization of the active class which could be more important in more realistic settings. In this paper, a comparison of these two options is presented when support vector models are used as predictors.
Efficient Analysis and Synthesis Using a New Factorization of the Gabor Frame Matrix
In this paper, we consider the case in which one needs to carry out Gabor analysis and synthesis on large signals using a short support analysis window and its corresponding, possibly longer canonical dual window, respectively. In this asymmetric context, we propose a novel factorization of the Gabor frame operator that exploits its strong and well-known structure and leads to a computational cost for synthesis, which is comparable to the one needed for short support analysis. The proposed factorization applies to any Gabor system with very mild conditions and leads to a potentially promising alternative to current synthesis algorithms in the case of short analysis windows whose support is …
Genomic Signature in Evolutionary Biology: A Review
Organisms are unique physical entities in which information is stored and continuously processed. The digital nature of DNA sequences enables the construction of a dynamic information reservoir. However, the distinction between the hardware and software components in the information flow is crucial to identify the mechanisms generating specific genomic signatures. In this work, we perform a bibliometric analysis to identify the different purposes of looking for particular patterns in DNA sequences associated with a given phenotype. This study has enabled us to make a conceptual breakdown of the genomic signature and differentiate the leading applications. On the one hand, it refers to gene …
Image Recognition through Incremental Discriminative Common Vectors
An incremental approach to the discriminative common vector (DCV) method for image recognition is presented. Two different but equivalent ways of computing both common vectors and corresponding subspace projections have been considered in the particular context in which new training data becomes available and learned subspaces may need continuous updating. The two algorithms are based on either scatter matrix eigendecomposition or difference subspace orthonormalization as with the original DCV method. The proposed incremental methods keep the same good properties than the original one but with a dramatic decrease in computational burden when used in this kind of dynamic scenario. Extensive …
Drugs and Nondrugs: An Effective Discrimination with Topological Methods and Artificial Neural Networks
A set of topological and structural descriptors has been used to discriminate general pharmacological activity. To that end, we selected a group of molecules with proven pharmacological activity including different therapeutic categories, and another molecule group without any activity. As a method for pharmacological activity discrimination, an artificial neural network was used, dividing molecules into active and inactive, to train the network and externally validate it. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval, and the output value of the neural network versus these values. Pharmacological distribution diagram…