0000000000061684
AUTHOR
J. J. Nuño-ballesteros
The doodle of a finitely determined map germ from R2 to R3
Let f:U⊂R2→R3 be a representative of a finitely determined map germ f:(R2,0)→(R3,0). Consider the curve obtained as the intersection of the image of the mapping f with a sufficiently small sphere Sϵ2 centered at the origin in R3, call this curve the associated doodle of the map germ f. For a large class of map germs the associated doodle has many transversal self-intersections. The topological classification of such map germs is considered from the point of view of the associated doodles.
Combinatorial Models in the Topological Classification of Singularities of Mappings
The topological classification of finitely determined map germs \(f:(\mathbb R^n,0)\rightarrow (\mathbb R^p,0)\) is discrete (by a theorem due to R. Thom), hence we want to obtain combinatorial models which codify all the topological information of the map germ f. According to Fukuda’s work, the topology of such germs is determined by the link, which is obtained by taking the intersection of the image of f with a small enough sphere centered at the origin. If \(f^{-1}(0)=\{0\}\), then the link is a topologically stable map \(\gamma :S^{n-1}\rightarrow S^{p-1}\) (or stable if (n, p) are nice dimensions) and f is topologically equivalent to the cone of \(\gamma \). When \(f^{-1}(0)\ne \{0\}\)…
The Image Milnor Number And Excellent Unfoldings
Abstract We show three basic properties of the image Milnor number µI(f) of a germ $f\colon(\mathbb{C}^{n},S)\rightarrow(\mathbb{C}^{n+1},0)$ with isolated instability. First, we show the conservation of the image Milnor number, from which one can deduce the upper semi-continuity and the topological invariance for families. Second, we prove the weak Mond’s conjecture, which states that µI(f) = 0 if and only if f is stable. Finally, we show a conjecture by Houston that any family $f_t\colon(\mathbb{C}^{n},S)\rightarrow(\mathbb{C}^{n+1},0)$ with $\mu_I(\,f_t)$ constant is excellent in Gaffney’s sense. For technical reasons, in the last two properties, we consider only the corank 1 case.
SLICING CORANK 1 MAP GERMS FROM C2 TO C3
THE BRUCE-ROBERTS NUMBER OF A FUNCTION ON A WEIGHTED HOMOGENEOUS HYPERSURFACE
The deformation multiplicity of a map germ with respect to a Boardman symbol
We define the deformation multiplicity of a map germ f: (Cn, 0) → (Cp, 0) with respect to a Boardman symbol i of codimension less than or equal to n and establish a geometrical interpretation of this number in terms of the set of Σi points that appear in a generic deformation of f. Moreover, this number is equal to the algebraic multiplicity of f with respect to i when the corresponding associated ring is Cohen-Macaulay. Finally, we study how algebraic multiplicity behaves with weighted homogeneous map germs.
Multiple point spaces of finite holomorphic maps
We show that there exists a unique possible definition, with certain natural properties, of the multiple point space of a holomorphic map between complex manifolds. Our construction coincides with the double point space and the k-th multiple point space for corank one map-germs, due to Mond. We also give some interesting properties of the double point space and prove that in many cases it can be computed as the zero locus of certain quotient of ideals.
The Bruce–Roberts Number of A Function on A Hypersurface with Isolated Singularity
AbstractLet $(X,0)$ be an isolated hypersurface singularity defined by $\phi \colon ({\mathbb{C}}^n,0)\to ({\mathbb{C}},0)$ and $f\colon ({\mathbb{C}}^n,0)\to{\mathbb{C}}$ such that the Bruce–Roberts number $\mu _{BR}(f,X)$ is finite. We first prove that $\mu _{BR}(f,X)=\mu (f)+\mu (\phi ,f)+\mu (X,0)-\tau (X,0)$, where $\mu $ and $\tau $ are the Milnor and Tjurina numbers respectively of a function or an isolated complete intersection singularity. Second, we show that the logarithmic characteristic variety $LC(X,0)$ is Cohen–Macaulay. Both theorems generalize the results of a previous paper by some of the authors, in which the hypersurface $(X,0)$ was assumed to be weighted homogeneous.
Surfaces in $\mathbb{R}^4$ and their projections to 3-spaces
Double points in families of map germs from ℝ2 to ℝ3
We show that a 1-parameter family of real analytic map germs [Formula: see text] with isolated instability is topologically trivial if it is excellent and the family of double point curves [Formula: see text] in [Formula: see text] is topologically trivial. In particular, we deduce that [Formula: see text] is topologically trivial when the Milnor number [Formula: see text] is constant.
Image Milnor number and 𝒜 e -codimension for maps between weighted homogeneous irreducible curves
Abstract Let (X, 0) ⊂ (ℂ n , 0) be an irreducible weighted homogeneous singularity curve and let f : (X, 0) → (ℂ2, 0) be a finite map germ, one-to-one and weighted homogeneous with the same weights of (X, 0). We show that 𝒜 e -codim(X, f) = μI (f), where the 𝒜 e -codimension 𝒜 e -codim(X, f) is the minimum number of parameters in a versal deformation and μI (f) is the image Milnor number, i.e. the number of vanishing cycles in the image of a stabilization of f.
Families of ICIS with constant total Milnor number
We show that a family of isolated complete intersection singularities (ICIS) with constant total Milnor number has no coalescence of singularities. This extends a well-known result of Gabriélov, Lazzeri and Lê for hypersurfaces. We use A’Campo’s theorem to see that the Lefschetz number of the generic monodromy of the ICIS is zero when the ICIS is singular. We give a pair applications for families of functions on ICIS which extend also some known results for functions on a smooth variety.
Isolated roundings and flattenings of submanifolds in Euclidean spaces
We introduce the concepts of rounding and flattening of a smooth map $g$ of an $m$-dimensional manifold $M$ to the euclidean space $\R^n$ with $m<n$, as those points in $M$ such that the image $g(M)$ has contact of type $\Sigma^{m,\dots,m}$ with a hypersphere or a hyperplane of $\R^n$, respectively. This includes several known special points such as vertices or flattenings of a curve in $\R^n$, umbilics of a surface in $\R^3$, or inflections of a surface in $\R^4$.
Double point curves for corank 2 map germs from C2 to C3
Abstract We characterize finite determinacy of map germs f : ( C 2 , 0 ) → ( C 3 , 0 ) in terms of the Milnor number μ ( D ( f ) ) of the double point curve D ( f ) in ( C 2 , 0 ) and we provide an explicit description of the double point scheme in terms of elementary symmetric functions. Also we prove that the Whitney equisingularity of 1-parameter families of map germs f t : ( C 2 , 0 ) → ( C 3 , 0 ) is equivalent to the constancy of both μ ( D ( f t ) ) and μ ( f t ( C 2 ) ∩ H ) with respect to t , where H ⊂ C 3 is a generic plane.
PLANE CURVE DIAGRAMS AND GEOMETRICAL APPLICATIONS
On the number of singularities of a generic surface with boundary in a 3-manifold
The link of a finitely determined map germ from R 2 to R 2
Let f: (R2, 0) → (R2, 0) be a finitely determined map germ. The link of f is obtained by taking a small enough representative f: U ⊂ R2 → R2 and the intersection of its image with a small enough sphere Sε1 centered at the origin in R2. We will describe the topology of f in terms of the Gauss word associated to its link.