0000000000061690

AUTHOR

Mahmoud Ramezani-mayiami

showing 6 related works from this author

Graph recursive least squares filter for topology inference in causal data processes

2017

In this paper, we introduce the concept of recursive least squares graph filters for online topology inference in data networks that are modelled as Causal Graph Processes (CGP). A Causal Graph Process (CGP) is an auto regressive process in the time series associated to different variables, and whose coefficients are the so-called graph filters, which are matrix polynomials with different orders of the graph adjacency matrix. Given the time series of data at different variables, the goal is to estimate these graph filters, hence the associated underlying adjacency matrix. Previously proposed algorithms have focused on a batch approach, assuming implicitly stationarity of the CGP. We propose…

Recursive least squares filterSignal processingMean squared errorComputer science020206 networking & telecommunications02 engineering and technologyCall graphNetwork topology0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)020201 artificial intelligence & image processingAdjacency matrixTime seriesAlgorithm2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
researchProduct

Graph Topology Learning and Signal Recovery Via Bayesian Inference

2019

The estimation of a meaningful affinity graph has become a crucial task for representation of data, since the underlying structure is not readily available in many applications. In this paper, a topology inference framework, called Bayesian Topology Learning, is proposed to estimate the underlying graph topology from a given set of noisy measurements of signals. It is assumed that the graph signals are generated from Gaussian Markov Random Field processes. First, using a factor analysis model, the noisy measured data is represented in a latent space and its posterior probability density function is found. Thereafter, by utilizing the minimum mean square error estimator and the Expectation M…

Minimum mean square errorOptimization problemComputer scienceBayesian probabilityExpectation–maximization algorithmEstimatorGraph (abstract data type)Topological graph theoryBayesian inferenceAlgorithm2019 IEEE Data Science Workshop (DSW)
researchProduct

Robust Graph Topology Learning and Application in Stock Market Inference

2019

In many applications, there are multiple interacting entities, generating time series of data over the space. To describe the relation within the set of data, the underlying topology may be used. In many real applications, not only the signal/data of interest is measured in noise, but it is also contaminated with outliers. The proposed method, called RGTL, infers the graph topology from noisy measurements and removes these outliers simultaneously. Here, it is assumed that we have no information about the space graph topology, while we know that graph signal are sampled consecutively in time and thus the graph in time domain is given. The simulation results show that the proposed algorithm h…

Graph signal processingComputer scienceTicker symbolInference020206 networking & telecommunications02 engineering and technology020204 information systemsOutlier0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Topological graph theoryStock marketTime domainAlgorithm2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
researchProduct

Joint Graph Learning and Signal Recovery via Kalman Filter for Multivariate Auto-Regressive Processes

2018

In this paper, an adaptive Kalman filter algorithm is proposed for simultaneous graph topology learning and graph signal recovery from noisy time series. Each time series corresponds to one node of the graph and underlying graph edges express the causality among nodes. We assume that graph signals are generated via a multivariate auto-regressive processes (MAR), generated by an innovation noise and graph weight matrices. Then we relate the state transition matrix of Kalman filter to the graph weight matrices since both of them can play the role of signal propagation and transition. Our proposed Kalman filter for MAR processes, called KF-MAR, runs three main steps; prediction, update, and le…

State-transition matrixMultivariate statistics010504 meteorology & atmospheric sciencesNoise measurementComputer scienceInference020206 networking & telecommunications02 engineering and technologyKalman filter01 natural sciencesGraphMatrix (mathematics)Autoregressive model0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Topological graph theoryOnline algorithmTime seriesAlgorithm0105 earth and related environmental sciences2018 26th European Signal Processing Conference (EUSIPCO)
researchProduct

Topology Inference and Signal Representation Using Dictionary Learning

2019

This paper presents a Joint Graph Learning and Signal Representation algorithm, called JGLSR, for simultaneous topology learning and graph signal representation via a learned over-complete dictionary. The proposed algorithm alternates between three main steps: sparse coding, dictionary learning, and graph topology inference. We introduce the “transformed graph” which can be considered as a projected graph in the transform domain spanned by the dictionary atoms. Simulation results via synthetic and real data show that the proposed approach has a higher performance when compared to the well-known algorithms for joint undirected graph topology inference and signal representation, when there is…

Computer science0202 electrical engineering electronic engineering information engineeringInferenceGraph (abstract data type)Topological graph theory020206 networking & telecommunications020201 artificial intelligence & image processingTopology inference02 engineering and technologyNeural codingAlgorithmDictionary learningGraph2019 27th European Signal Processing Conference (EUSIPCO)
researchProduct

JOINT TOPOLOGY LEARNING AND GRAPH SIGNAL RECOVERY VIA KALMAN FILTER IN CAUSAL DATA PROCESSES

2018

In this paper, a joint graph-signal recovery approach is investigated when we have a set of noisy graph signals generated based on a causal graph process. By leveraging the Kalman filter framework, a three steps iterative algorithm is utilized to predict and update signal estimation as well as graph topology learning, called Topological Kalman Filter or TKF. Similar to the regular Kalman filter, we first predict the a posterior signal state based on the prior available data and then this prediction is updated and corrected based on the recently arrived measurement. But contrary to the conventional Kalman filter algorithm, we have no information of the transition matrix and hence we relate t…

0209 industrial biotechnologyMean squared errorIterative methodComputer scienceStochastic matrixInference020206 networking & telecommunications02 engineering and technologyKalman filterTopology020901 industrial engineering & automationSignal recovery0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Topological graph theory2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
researchProduct