0000000000061794
AUTHOR
Peerapong Yotprayoonsak
Carbon nanotube field-effect devices with asymmetric electrode configuration by contact geometry
We have studied experimentally the conductive properties of single walled carbon nanotube (SWNT) based field-effect type devices, with different contact geometries at the connecting electrode. The device designs are asymmetric with one end of the SWNT having the metal electrode deposited on top and immersing it, while at the other end, the SWNT is on top of the electrode. The devices were made with either gold or palladium as electrode materials, of which the latter resulted in different behavior of the different contact types. This is argued to be caused by the existence of a thin insulating layer of surface adsorbents on the palladium, possibly Pd5O4, the effect of which is enhanced by th…
Why are hydrogen ions best for MeV ion beam lithography?
The exposure characteristics of poly-(methyl methacrylate) (PMMA) for 2MeV ^1H^+, 3MeV ^4He^2^+ and 6MeV ^1^2C^3^+ have been investigated. The samples were characterised using Atomic Force Microscopy (AFM), optical microscopy and Raman spectroscopy. Development was carried out using a 7:3 propan-2-ol:H"2O mixture to determine clearing and cross-linking fluences. It was found that protons had a considerably wider tolerance to exposure variations and a smaller span of doses within the ion track. Furthermore, the void formation and consequent stress-induced surface roughening were smaller for protons. For all ions, the C?C bond Raman signal increased continuously with dose and fluence, even we…
Complexes of carbon nanotubes with ions and macromolecules : studies on electronic conduction properties
Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex.
We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm−1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance. peerReviewed
Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time
The carbon nanotube (CNT) is known to be very sensitive to changes in its surrounding environment. Our study is on the effects of mild, liquid-phase alkali-doping on electronic transport in individual CNTs. We find clear and consistent reversal from p- to n-type behavior, with all seven investigated CNT field-effect transistors (FETs) retaining a similar ON/OFF ratio and subthreshold slope. We have also measured the realtime electronic response during liquid-phase doping, and demonstrate detection of alkali cations with a signal response that ranges over more than three orders of magnitude. The doping is fully reversible upon exposure to oxygen, and the doping cycle is repeatable. We also c…