0000000000062002
AUTHOR
Paolo Macor
Constitutive psgl-1 correlates with cd30 and tcr pathways and represents a potential target for immunotherapy in anaplastic large t-cell lymphoma
Simple Summary P-selectin glycoprotein ligand-1 (PSGL-1), coded by the SELPLG gene, is the major ligand of selectins and plays a pivotal role in tethering, rolling and extravasation of immune cells. PSGL-1 involvement in core molecular programs, such as SYK, PLCγ2, PI3Kγ or MAPK pathways, suggests additional functions beyond the modulation of cell trafficking. Recently, several studies identified a novel mechanism responsible for PSGL-1-mediated immune suppression in the tumor microenvironment and proved a novel concept of PSGL-1 as a critical checkpoint molecule for tumor immunotherapy. The immunotherapeutic approach has gained an ever-growing interest in the treatment of several hematolog…
New treatment of multiple mieloma and anaplastic T cell lymphoma using C-fixing anti-CD162 antibodies
Complement C1q and C8beta deficiency in an individual with recurrent bacterial meningitis and adult-onset systemic lupus erythematosus-like illness.
Co-existing complement C8 deficiency ameliorated the SLE associated with C1q deficiency.
Complement Component 3 expressed by the endometrial ectopic tissue is involved in the endometriotic lesion formation through mast cell activation
AbstractThe pathophysiology of endometriosis (EM) is an excellent example of immune dysfunction, reminiscent of tumor microenvironment as well. Here, we report that an interplay between C3 and mast cells (MCs) is involved in the pathogenesis of ectopic EM. C3 is at the epicenter of the regulatory feed forward loop, amplifying the inflammatory microenvironment, in which the MCs are protagonists. Thus, C3 can be considered a marker of EM and its local synthesis can promote the engraftment of the endometriotic cysts. We generated a murine model of EM via injection of minced uterine tissue from a donor mouse, into the peritoneum of the recipient mice. The wild type mice showed greater amount of…
Dynamics of complement activation in aHUS and how to monitor eculizumab therapy.
Atypical hemolytic-uremic syndrome (aHUS) is associated with genetic complement abnormalities/anti–complement factor H antibodies, which paved the way to treatment with eculizumab. We studied 44 aHUS patients and their relatives to (1) test new assays of complement activation, (2) verify whether such abnormality occurs also in unaffected mutation carriers, and (3) search for a tool for eculizumab titration. An abnormal circulating complement profile (low C3, high C5a, or SC5b-9) was found in 47% to 64% of patients, irrespective of disease phase. Acute aHUS serum, but not serum from remission, caused wider C3 and C5b-9 deposits than control serum on unstimulated human microvascular endotheli…
Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies
Sara Capolla,1 Chiara Garrovo,2 Sonia Zorzet,1 Andrea Lorenzon,3 Enrico Rampazzo,4 Ruben Spretz,5 Gabriele Pozzato,6 Luis Núñez,7 Claudio Tripodo,8 Paolo Macor,1,9 Stefania Biffi2 1Department of Life Sciences, University of Trieste, 2Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, 3Animal Care Unit, Cluster in Biomedicine (CBM scrl), Trieste, Italy; 4Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy; 5LNK Chemsolutions LLC, Lincoln, NE, USA; 6Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 7Bio-Target, Inc., University of C…
Selection and characterization of a novel agonistic human recombinant anti-Trail-R2 minibody with anti-leukemic activity
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising natural anticancer therapeutic agent because through its “death receptors”, TRAIL-R1 and TRAIL-R2, it induces apoptosis in many transformed tumor cells, but not in the majority of normal cells. Hence, agonistic compounds directed against TRAIL death receptors have the potential of being excellent cancer therapeutic agents, with minimal cytotoxicity in normal tissues. Here, we report the selection and characterization of a new single-chain fragment variable (scFv) to TRAIL-R2 receptor isolated from a human phage-display library, produced as minibody (MB), and characterized for the in vitro anti-leukemic tumoricid…
The Inflammatory Feed-Forward Loop Triggered by the Complement Component C3 as a Potential Target in Endometriosis
Copyright © 2021 Agostinis, Zorzet, Balduit, Zito, Mangogna, Macor, Romano, Toffoli, Belmonte, Morello, Martorana, Borelli, Ricci, Kishore and Bulla. The complement system is a major component of humoral innate immunity, acting as a first line of defense against microbes via opsonization and lysis of pathogens. However, novel roles of the complement system in inflammatory and immunological processes, including in cancer, are emerging. Endometriosis (EM), a benign disease characterized by ectopic endometrial implants, shows certain unique features of cancer, such as the capacity to invade surrounding tissues, and in severe cases, metastatic properties. A defective immune surveillance against…
In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab.
AbstractAn in vivo model of human CD20+ B-lymphoma was established in severe combined immunodeficiency mice to test the ability of human neutralizing miniantibodies to CD55 and CD59 (MB55 and MB59) to enhance the therapeutic effect of rituximab. The miniantibodies contained single-chain fragment variables and the hinge-CH2-CH3 domains of human IgG1. LCL2 cells were selected for the in vivo study among six B-lymphoma cell lines for their high susceptibility to rituximab-dependent complement-mediated killing enhanced by MB55 and MB59. The cells injected i.p. primarily colonized the liver and spleen, leading to the death of the animals within 30 to 40 days. Thirty percent of mice receiving bio…
Is local complement activation involved in renal damage in patients with atypical haemolytic uraemic syndrome?
OP0023 Targeted Polymeric Nanoparticles as Diagnostic and Therapeutic Tool for Rheumatoid Arthritis
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting joints due to the persistent synovial tissue inflammation. RA treatment has dramatically evolved in the last 20 years due to the production of biological Disease Modifying Antirheumatic Drugs (bDMARDs). However, side effects and the high costs of biological drugs are holding back their widespread usage. Moreover, some patients fail to respond to bDMARDs, for all of these reasons, DMARDs remains the main desired strategy for the treatment of RA, and Methotrexate (MTX) is still the “anchor” drug to treat RA. A successful treatment depends also on the early diagnosis, treating patients as soon as possible …
New Potential Therapeutic Approach for the Treatment of B-Cell Malignancies Using Chlorambucil/Hydroxychloroquine-Loaded Anti-CD20 Nanoparticles
Current B-cell disorder treatments take advantage of dose-intensive chemotherapy regimens and immunotherapy via use of monoclonal antibodies. Unfortunately, they may lead to insufficient tumor distribution of therapeutic agents, and often cause adverse effects on patients. In this contribution, we propose a novel therapeutic approach in which relatively high doses of Hydroxychloroquine and Chlorambucil were loaded into biodegradable nanoparticles coated with an anti-CD20 antibody. We demonstrate their ability to effectively target and internalize in tumor B-cells. Moreover, these nanoparticles were able to kill not only p53 mutated/deleted lymphoma cell lines expressing a low amount of CD20…
Development of a human-SCID lymphoma as a model to evaluate the therapeutic effect of Rituximab
Pathogenic Role of Complement in Antiphospholipid Syndrome and Therapeutic Implications
Antiphospholipid syndrome (APS) is an acquired autoimmune disease characterized by thromboembolic events, pregnancy morbidity, and the presence of antiphospholipid (aPL) antibodies. There is sound evidence that aPL act as pathogenic autoantibodies being responsible for vascular clots and miscarriages. However, the exact mechanisms involved in the clinical manifestations of the syndrome are still a matter of investigation. In particular, while vascular thrombosis is apparently not associated with inflammation, the pathogenesis of miscarriages can be explained only in part by the aPL-mediated hypercoagulable state and additional non-thrombotic effects, including placental inflammation, have b…
New Therapeutic Approach for the Treatment of B-Cell Disorders Using Chlorambucil/Hydroxychloroquine-Loaded AntiCD20 Nanoparticles
Abstract Abstract 158 B-cell disorders show highly variable clinical courses, ranging between indolent diseases like the chronic lymphocytic leukemia (CLL) and highly aggressive lymphoproliferative disorders like Burkitt Lymphoma. The treatments of these disorders have been characterized by the development of new approaches, including dose-intensive chemotherapy regimens and immunotherapy via monoclonal antibodies (Ab). Despite the promising survival rates, these multi-agent treatments are flawed by a high degree of toxicity and a significant fraction of patients do not respond. The use of core shell nanoparticles design with specific Ab-coating represents a new strategy to target only tumo…
Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice.
The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4-25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluate…
Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis
Abstract Despite the advances in the treatment of rheumatoid arthritis (RA) achieved in the last few years, several patients are diagnosed late, do not respond to or have to stop therapy because of inefficacy and/or toxicity, leaving still a huge unmet need. Tissue-specific strategies have the potential to address some of these issues. The aim of the study is the development of a safe nanotechnology approach for tissue-specific delivery of drugs and diagnostic probes. CD34 + endothelial precursors were addressed in inflamed synovium using targeted biodegradable nanoparticles (tBNPs). These nanostructures were made of poly-lactic acid, poly-caprolactone, and PEG and then coated with a synovi…
P-Selectin Glycoprotein Ligand-1 as a Potential Target for Humoral Immunotherapy of Multiple Myeloma (Supplementry Material)
Monoclonal antibodies (mAbs), successfully adopted in the treatment of several haematological malignancies, have proved almost ineffective in multiple myeloma (MM), because of the lack of an appropriate antigen for targeting and killing MM cells. Here, we demonstrate that PSGL1, the major ligand of P-Selectin, a marker of plasmacytic differentiation expressed at high levels on normal and neoplastic plasma cells, may represent a novel target for mAb-mediated MM immunotherapy. The primary effectors of mAb-induced cell-death, complement-mediated lysis (CDC) and antibody-dependent cellmediated cytotoxicity (ADCC), were investigated using U266B1 and LP1 cell-lines as models. Along with immunolog…
Humoral immunotherapy of multiple myeloma: perspectives and perplexities
IMPORTANCE OF THE FIELDS Multiple myeloma (MM) is a hematological malignancy still remaining incurable despite the various therapies available, mainly because of the high fraction of refractory/relapsing cases. Therefore, the development of novel therapeutic approaches is urgently needed to overcome conventional treatment resistance. AREAS COVERED IN THIS REVIEW: In the era of targeted therapies, treatments combining a high specificity for neoplastic cells and the capability to interfere with environmental signals should be regarded as the weapons of choice. Monoclonal antibody (mAb)-based humoral immunotherapy could satisfy both these requirements when applied to MM. Indeed, many of the mo…
Neutralizing human antibodies against CD55 and CD59 targeted to lymphoma cells in vivo potentiate the therapeutic effect of Rituximab
An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies
B-cell malignancies account for over the 90% of all lymphoid neoplasms. The clonal proliferations of B-cells show a high degree of variation in terms of clinical and presenting features, histopathology, immuophenotype, and genetics. Primary tumor samples are useful for examining the characteristics of a patients own tumor, although both primary leukemic cells and cell lines provide an initial step for screening novel compounds for their activity in some hematological malignancies, they should be followed by models in intact animals. In this review, we try to summarize the animal models generated to study B-cell malignancies, in particular, B-cell lymphoma, B-cell CLL and MM that represent t…
C7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function.
AbstractWe describe a novel localization of C7 as a membrane-bound molecule on endothelial cells (ECs). Data obtained by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), Western blot analysis, Northern blot analysis, and mass spectrometry revealed that membrane-associated C7 (mC7) was indistinguishable from soluble C7 and was associated with vimentin on the cell surface. mC7 interacted with the other late complement components to form membrane-bound TCC (mTCC). Unlike the soluble SC5b-9, mTCC failed to stimulate ECs to express adhesion molecules, to secrete IL-8, and to induce albumin leakage through a monolayer of ECs, and more importantly protected ECs from the proinf…
FRI0030 Anti-TNF-α Antibody Targeted To Inflamed Synovial Tissue for The Treatment of Rheumatoid Arthritis
Background TNF-α neutralizing molecules represent one of the most efficient therapeutic approaches to control inflammation in rheumatoid arthritis (RA). The widespread distribution in the body induces the inhibition of TNF-α in all the tissues, requesting the use of high dose of this expensive drug. Another problem that has not yet been solved in the management of RA patients is how to reduce and possibly avoid the side effects, particularly the increased risk of common and opportunistic infections, which may be associated with long-term administration of these therapeutic drugs. Objectives The aim of the present investigation was to show that a recombinant protein obtained by fusing a syno…
In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging.
Rituximab is a chimeric monoclonal antibody directed against human CD20 antigen, which is expressed on B-cell lymphocytes and on the majority of B-cell lymphoid malignancies. Herein we report the conjugate of rituximab with the near-infrared (NIR) fluorophore Cy5.5 (RI-Cy5.5) as a tool for in vitro, in vivo, and ex vivo NIR time-domain (TD) optical imaging. In vitro, RI-Cy5.5 retained biologic activity and led to elevated cell-associated fluorescence on tumor cells. In vivo, TD optical imaging analysis of RI-Cy5.5 injected into lymphoma-bearing mice revealed a slow tumor uptake and a specific long-lasting persistence of the probe within the tumor. Biodistribution studies after intraperiton…
A new approach for the treatment of CLL using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles
Current approaches for the treatment of chronic lymphocytic leukemia (CLL) have greatly improved the prognosis for survival, but some patients remain refractive to these therapeutic regimens. Hence, in addition to reducing the long-term sideeffects of therapeutics for all leukemia patients, there is an urgent need for novel therapeutic strategies for difficult-to-treat leukemia cases. Due to the cytotoxicity of drugs, the major challenge currently is to deliver the therapeutic agents to neoplastic cells while preserving the viability of non-malignant cells. In this study, we propose a therapeutic approach in which high doses of hydroxychloroquine and chlorambucil were loaded into biodegrada…
Exploratory study on the effects of biodegradable nanoparticles with drugs on malignant B cells and on a human/mouse model of Burkitt lymphoma.
The aim of this study was to determine if Rituximab coated Biodegradable Nanoparticles (BNPs) loaded with Chlorambucil and Hydroxychloroquine could induce apoptosis of B-Chronic Lymphocytic Leukemia (B-CLL), MEC-1 and BJAB cells in vitro and evaluate their toxic and therapeutic effects on a Human/Mouse Model of Burkitt Lymphoma at an exploratory, proof of concept scale. We found that Rituximab-Chlorambucil-Hydroxychloroquine BNPs induce a decrease in cell viability of malignant B cells in a dose-dependent manner. The mediated cytotoxicity resulted from apoptosis, and was confirmed by monitoring the B-CLL cells after Annexin V/propidium iodide staining. Additional data revealed that these BN…