0000000000064046

AUTHOR

Xabier Agirre

Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination

The reason why a few myeloma cells egress from the bone marrow (BM) into peripheral blood (PB) remains unknown. Here, we investigated molecular hallmarks of circulating tumor cells (CTCs) to identify the events leading to myeloma trafficking into the bloodstream. After using next-generation flow to isolate matched CTCs and BM tumor cells from 32 patients, we found high correlation in gene expression at single-cell and bulk levels (r ≥ 0.94, P = 10−16), with only 55 genes differentially expressed between CTCs and BM tumor cells. CTCs overexpressed genes involved in inflammation, hypoxia, or epithelial–mesenchymal transition, whereas genes related with proliferation were downregulated in CTCs…

research product

Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

Abstract Analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed regional DNA hypermethylation embedded in extensive global hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM as compared to normal plasma cells were located outside CpG islands and were unexpectedly associated with intronic enhancer regions active in normal B cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with downregulation of its host genes. ChIP-seq and DNAseI-se…

research product

Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma

AbstractThe historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK–MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time …

research product

Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) a…

research product

Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas

AbstractIntegrative genomic and gene-expression analyses have identified amplified oncogenes in B-cell non-Hodgkin lymphoma (B-NHL), but the capability of such technologies to localize tumor suppressor genes within homozygous deletions remains unexplored. Array-based comparative genomic hybridization (CGH) and gene-expression microarray analysis of 48 cell lines derived from patients with different B-NHLs delineated 20 homozygous deletions at 7 chromosome areas, all of which contained tumor suppressor gene targets. Further investigation revealed that only a fraction of primary biopsies presented inactivation of these genes by point mutation or intragenic deletion, but instead some of them w…

research product