0000000000064113
AUTHOR
Stanislavs Gendelis
Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions
The usage of phase change materials (PCMs) is a way to store excess energy pro- duced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase signi cantly. It is therefore of great interest if the ther- mal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show tha…
Studies Energy Efficiency of the Renewable Sources use Considering Climate in Latvia
AbstractThe paper discusses problems of energy supply of buildings using renewable sources given the local climatic conditions. The meteorological conditions in Latvia and Riga for last year were analyzed. In paper shows examples of energy efficient buildings allowing that to provide comfort temperature and indoor air quality. The structure and composition of local building materials, providing good thermal insulation are described. The heating systems for test buildings using renewable energy sources were investigated. The assessment of the energy efficiency of the “air-air” and “air-water” heat pumps is studied.
Energy Efficiency and Sustainability of Different Building Structures in Latvian Climate
Five experimental test buildings have been built in Riga, Latvia. They are identical except external walls for which different mainly regional building materials are used. Calculated U-values of the other walls, floor and ceiling are the same for each test building. Initial moisture influences the relative humidity of indoor air, which can be higher in the initial time period; as a result, heat transmittances are also very different and cause different heating/cooling energy consumption. Overheating risk in summer exists for test buildings with the smallest thermal inertia. Both summer and heating seasons have been analysed and differences between five test houses have been discussed in det…
Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings
Abstract The aim of the current paper is to analyse thermal comfort and overheating risks in the low-energy buildings in a summer season under Latvian climate conditions both experimentally and numerically. An interior temperature and relative humidity are analysed under free-floating conditions. Two cases are analysed: in one case, the solar influence through the window is taken into account; in the other this influence is omitted. Three different building solutions are observed: two building structures which mainly consist of the mineral wool and wooden materials and one structure from aerated clay bricks and mineral wool. The experiments have been implemented in test stands in Riga, Latv…
Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons
This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems – electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice o…
Thermal conductivity measurement of insulating innovative building materials by hot plate and heat flow meter devices: A Round Robin Test
Abstract The characterization of thermal insulation properties of construction materials represents a fundamental step on the building insulation assessment. In recent years innovative materials have been introduced in the market to fulfill the continuously growing requirements of energy saving and sustainability, and their performance is not so reliable and mature as it happens for traditional insulators. The work presents a Round Robin Test realised among six European laboratories hosting hot plates devices to measure the thermal conductivity of four different materials: aerogel, vacuum insulation panels, polystyrene and birch wood fibre insulation boards. After the definition of the comm…
Long term energy efficiency study on different wall envelopes in Latvian climate conditions
Abstract Five test stands have been built in Riga, Latvia equipped with sensors (temperature, solar radiation, humidity, etc.) to measure energy efficiency and thermal comfort conditions. Roof and floor constructions are made the same. For the walls building envelopes differ and typical materials used in Latvia (aerated concrete, ceramic building blocks, wooden log and plywood frame with rock wool insulation) are compared. Only rock wool is used for insulation to provide moisture transport through the construction. For study to be comparative thermal transmittance of all five test stands have been calculated equal (U=0.15…0.16 W/(m 2 ∙K)). The aim of research is to compare the integral calc…
Thermal conductivity of disperse insulation materials and their mixtures
Development of new, more efficient thermal insulation materials is a key to reduction of heat losses and contribution to greenhouse gas emissions. Two innovative materials developed at Thermeko LLC are Izoprok and Izopearl. This research is devoted to experimental study of thermal insulation properties of both materials as well as their mixture. Results show that mixture of 40% Izoprok and 60% of Izopearl has lower thermal conductivity than pure materials. In this work, material thermal conductivity dependence temperature is also measured. Novel modelling approach is used to model spatial distribution of disperse insulation material. Computational fluid dynamics approach is also used to est…
Analysis of Thermal Comfort Conditions and Actual Energy Efficiency for Different Heating Systems in Test Buildings
The aim of this study is detailed analysis of long-term monitoring data on thermal comfort conditions and energy efficiency in small test buildings equipped with different heating systems. Calculations of PPD index and local thermal discomfort factors, as well as actual energy efficiency ratios for different heat pump systems are provided for the test buildings during three weeks of the heating season. It is shown that the type of heating system has an influence not only on heating energy needs, but also on thermal comfort conditions in the room.
Transient Modelling of Thermal Conditions in Test Buildings Including Radiation
Abstract To increase the energy efficiency of buildings in Latvia's climate a comparative study with five experimental test buildings have been set up in Riga, Latvia. Different thermo physical quantities such as temperature, humidity, air velocity, etc. were monitored to better understand different behaviour of the building envelope. This gives an excellent validation possibility for the CFD model that in future could predict conditions in buildings with different envelopes. Previously a stationary model and transient model were considered without taking into consideration the thermal radiation. This study continues the previous work that was done and proposes a transient model which takes…
Assessment of Plant Origin By-Products as Lightweight Aggregates for Bio-Composite Bounded by Starch Binder
Thermal insulation bio-composites made of plant origin by-products as bio-aggregates are one of the ways to decrease the impact of the building and construction sector on CO2 emissions. In this study, three bio-aggregates were analysed for their potential use in the production of bio-composites with potato starch binder. Technologically important properties, such as particle size, shape and compacted bulk density, as well as properties of the resulting bio-composites were identified. The main characteristics of the aggregates are relatively similar: density of 80–100 kg/m3, thermal conductivity of 0.042–0.045 W/m∙K, specific heat capacity of 1240–1330 J/g∙K, ki…
Web-based real-time data acquisition system as tool for energy efficiency monitoring
A web-based data acquisition system is proposed as a research tool of the energy efficiency monitoring project of the test stands. Basic requirements for the architecture of the data acquisition system are discussed. The architecture of the data acquisition system is proposed to provide the real-time interface with sensors, to acquire and to log data from all sensors with fixed rate, and to deliver logged data through FTP to the end-user.
Experimental testing of phase change materials in a warm-summer humid continental climate
Abstract The construction industry (and buildings) is one of the largest energy consuming and CO2 emitting sectors in the world. To counter this, more lightweight structures are being used and energy saving applications are being developed. Phase change materials (PCM) are materials that can be considered to tackle these new challenges. It has been proven that PCMs can be passively used to improve the thermal mass of lightweight structures, which improves thermal comfort and reduces peak cooling and heating loads and therefore provides energy savings. To use these materials in an active way, they should be used together with ventilation, cooling or heating equipment, and collectors to accum…
Wall assemblies U-value calculation in test buildings using constant power heating
Abstract Building envelopes under various climates behave differently, in this paper the actual thermal transmittance or U-value of five different wall assemblies are evaluated and compared with values, calculated using standard EN ISO 6946. The experiment is carried out in five test buildings with equal spatial orientation, the same ceiling and floor assemblies as well as the same windows and doors mounted in each building. The thermal transmittances for these partitions are assumed to be well known and therefore, by knowing temperature difference and heat sources inside the building, the thermal transmittance of wall assembly can be calculated. It is shown that for small buildings the cor…
In-situ measurements of hemp-lime insulation materials for energy efficiency improvement
Abstract Reduction of the CO2 emissions in the atmosphere is one of the goals set forth by the European Union, hence various directives have been adopted, such as the European directive 2012/27/EU on energy efficiency, i.e. ensuring from 2019 the construction of the near-zero energy buildings (nZEB). The construction segment plays a very important part in solving the current global problem of the greenhouse gas emissions and related processes of global warming, because in certain countries (i.e. in Latvia) it represents more than a half of the total energy consumption. Hence the necessity to elaborate means on how to boost the energy efficiency of the buildings meanwhile not rising pressure…