0000000000064211
AUTHOR
Sultan B. Dabagov
IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers
This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the preces…
Desktop X-ray tomography for low contrast samples
Abstract Based on the experience in the use of polycapillary optical systems, recently XLab Frascati LNF and IM CNR have been strongly involved in studying the techniques for high resolution X-ray Imaging and micro-tomography that intends in the development of a new imaging instrument to examine low contrast samples complicated by fast developing processes. In order to get the reliable signal to noise ratio, typically available via synchrotron radiation (SR) dedicated X-ray optical devices, for the desktop solutions we have to increase the radiation fluxes from conventional sources. As known, manipulated through polycapillary optics beams result in getting higher fluxes with respect to a pi…