0000000000064226

AUTHOR

Francesco Spinozzi

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

research product

Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns

International audience; Curcumin is a natural polyphenol able to bind the amyloid beta peptide, which is related to Alzheimer's disease, and modify its self-assembly pathway. This paper focuses on a multi-disciplinary study that starts from the design of curcumin-like compounds with the key chemical features required for inhibiting amyloid beta aggregation, and reports the effects of these compounds on the in vitro aggregation of amyloid beta peptides. Chemoinformatic screening was performed through the calculation of molecular descriptors that were able to highlight the drug-like profile, followed by docking studies with an amyloid beta peptide fibril. The computational design underlined t…

research product

Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature

α–synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α–synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α–synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α–synuclein fibrils fragmentati…

research product

The impact of high hydrostatic pressure on structure and dynamics of beta-lactoglobulin

Abstract Methods Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution. Background βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3. Results High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put …

research product

Entrapment and characterization of functional allosteric conformers of hemocyanin in sol–gel matrices

Hemocyanins are giant oxygen transport proteins of molluscs and arthropods, which display high cooperativity and a complex pattern of conformations, generated by hierarchical allosteric interactions of their complex quaternary structure. A still unanswered question is the correlation between the functional properties of the postulated conformers and structural features that govern their oxygen binding, such as metal complex coordination. In this study we focus on the dodecameric hemocyanin of the crustacean Carcinus aestuarii, with the aim to obtain a functional and structural characterization of the individual conformational states giving rise to cooperativity, by entrapping hemocyanin int…

research product

The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors

AbstractThe maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (…

research product

Quaternary structures of GroEL and naïve-Hsp60 chaperonins in solution: a combined SAXS-MD study

The quaternary structures of bacterial GroEL and human naïve-Hsp60 chaperonins in physiological conditions have been investigated by an innovative approach based on a combination of synchrotron Small Angle X-ray Scattering (SAXS) in-solution experiments and molecular dynamics (MD) simulations. Low-resolution SAXS experiments over large and highly symmetric oligomers are analyzed on the basis of the high-resolution structure of the asymmetric protein monomers, provided by MD. The results reveal remarkable differences between the solution and the crystallographic structure of GroEL and between the solution structures of GroEL and of its human homologue Hsp60.

research product

Structure and Stability of Hsp60 and Groel in Solution

Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …

research product

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…

research product