0000000000064344

AUTHOR

Edoardo Milotti

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

research product

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

research product

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

research product

STUDIES OF WIRE GAIN AND TRACK DISTORTION NEAR THE SECTOR EDGES OF THE ALEPH TIME PROJECTION CHAMBER

Abstract The materials used to hold the wires at the sector edges in a large Time Projection Chamber (TPC) inrtoduce distortions of the electric drift field near those edges. These distortions degrade tracking information and sometimes cause large changes in wire gain near the edge. We have studied these two problems for the ALEPH TPC and have found that both can be greatly reduced by the addition of two field correction strips held at appropriate voltages.

research product

Management and Control of the Read Out Processors (tpps) of the Aleph Time Projection Chamber

The readout of the Aleph time projection chamber (TPC) relies on a set of 72 time projection processors (TPPs), which are based on a Motorola 68020 microprocessor running a real-time operating system. The advanced processing capabilities of the TPPs allow them to perform in parallel a number of tasks, both during and outside of data acquisition, which are outlined. The management and control of such a large number of intelligent devices is presented. The discussion covers the hardware configuration of the TPPs; the software running the TPPs; their management, status, and control; exception handling and message logging; and the TPP monitoring tasks. >

research product

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

LIGO Scientific Collaboration and Virgo Collaboration: et al.

research product

TRACKING WITH THE ALEPH TIME PROJECTION CHAMBER

The tracking performance of the ALEPH time projection chamber (TPC) has been studied using the data taken during the LEP (Large Electron-Positron Collider) running periods in 1989 and 1990. After careful correction of residual distortions and optimization of coordinate reconstruction algorithms, a single coordinate resolution of 173 mu m in the azimuthal and 740 mu m in the longitudinal direction is achieved. This results in a momentum resolution for the TPC alone of Delta p/p/sup 2/=0.0012 (GeV/c)/sup -1/. In combination with the ALEPH inner tracking chamber (ITC), a total momentum resolution of Delta p/p/sup 2/=0.0008 (GeV/c)/sup -1/, close to the design specifications, is reached. >

research product

The read-out processors of the Aleph time projection chamber and their performance

The Aleph detector is installed on the LEP electron-positron storage ring. Its central tracking detector, a time projection chamber (TPC), has about 50000 channels of sampling electronics. The digitized signals are processed by 72 double-width Fastbus modules built around an MC 68020 processor. The time projection processor is described, and the solutions, both hardware and software, adopted to run and manage such a complex system in a Fastbus-VAX environment are discussed. Practical experience with the system is reported. >

research product

GW190412: Observation of a binary-black-hole coalescence with asymmetric masses

LIGO Scientific Collaboration and Virgo Collaboration: et al.

research product

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…

research product

THE FASTBUS READ-OUT SYSTEM FOR THE ALEPH TIME PROJECTION CHAMBER

The readout system for the Aleph central tracking detector, a large time projection chamber (TPC), consists of more than 100 FASTBUS crates with approximately 1000 FASTBUS modules. The detector and its associated electronics are briefly presented, followed by a more detailed description of the readout and control system. The discussion covers the sector readout, electronics calibration, front-end data acquisition, data pipelining, and service request handling. Experiences with the system are discussed. >

research product