0000000000064352
AUTHOR
Zoubir Ouhib
Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy
Abstract Purpose The purpose of this work was to evaluate whether the delivered dose to the skin surface and at the prescription depth when using a Freiburg flap applicator is in agreement with the one predicted by the treatment planning system (TPS) using the TG-43 dose-calculation formalism. Methods and Materials Monte Carlo (MC) simulations and radiochromic film measurements have been performed to obtain dose distributions with the source located at the center of one of the spheres and between two spheres. Primary and scatter dose contributions were evaluated to understand the role played by the scatter component. A standard treatment plan was generated using MC- and TG-43-based TPS appl…
Radiation leakage study for the Valencia applicators
Abstract Introduction and purpose The Valencia applicators which are accessories of the microSelectron-HDR afterloader (Nucletron, Veenendaal, The Netherlands) are designed to treat skin lesions. These cup-shaped applicators are an alternative to superficial/orthovoltage x-ray treatment units. They limit the irradiation to the required area using tungsten-alloy shielding, and are equipped with a tungsten-alloy flattering filter allowing the treatment of skin tumors, the oral cavity, vaginal cuff, etc. The tungsten-alloy thickness to shield radiation is not the same in all parts of the applicators. This fact led us to question whether the leakage radiation differs depending on where it is me…
HDR Valencia skin applicators: A proposed commissioning procedure
Response to “Comment on ‘Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry’ ” [Med. Phys. 42 , 4954-4964 (2015)]
Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit
Purpose: Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM). Material and methods: A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM) outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM) and each individual FM…
Commissioning and periodic tests of the Esteya® electronic brachytherapy system
A new electronic brachytherapy unit from Elekta, called Esteya(®), has recently been introduced to the market. As a part of the standards in radiation oncology, an acceptance testing and commissioning must be performed prior to treatment of the first patient. In addition, a quality assurance program should be implemented. A complete commissioning and periodic testing of the Esteya(®) device using the American Association of Physicists in Medicine (AAPM), Groupe Europeen de Curietherapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) guidelines for linacs and brachytherapy units as well as our personal experience is described in this paper. In addition to the methodology, r…
Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry
Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit …
Surface brachytherapy: Joint report of the AAPM and the GEC-ESTRO Task Group No. 253.
The surface brachytherapy Task Group report number 253 discusses the common treatment modalities and applicators typically used to treat lesions on the body surface. Details of commissioning and calibration of the applicators and systems are discussed and examples are given for a risk-based analysis approach to the quality assurance measures that are necessary to consider when establishing a surface brachytherapy program.
Commissioning and quality assurance procedures for the HDR Valencia skin applicators
The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR) 192 Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm). The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set …