0000000000064595

AUTHOR

Vladimir V. Breus

Cytotoxicity of Metal and Semiconductor Nanoparticles Indicated by Cellular Micromotility

In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods…

research product

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in compa…

research product

Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells

Exciton separation dynamics in the electron transfer system containing highly photostable CdSe/CdS core/shell nanocrystal quantum dots and adsorbed methylviologen was investigated by means of femtosecond absorption spectroscopy. The experiments revealed that electron extraction from the photoexcited core is possible, and the rate of the ET reaction strongly depends on the CdS shell thickness. A CdS associated exponential decay constant β of 0.33 A−1 was obtained reflecting the electronic barrier effect of the shell. These findings show that core/shell structures are well suited for the design of optimized QD-based solar cells.

research product

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine–QDs, negatively charged dihydrolipoic acid–QDs and zwitterionic D-penicillamine–QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine–QDs were found to be the least cytotoxic, while D-penicillamine–QDs reduced the mitochondrial activ…

research product