0000000000064617
AUTHOR
Joachim R. Krenn
Near-field optical response of a two-dimensional grating of gold nanoparticles
Laboratoire de Physique, Optique Submicronique, Universite´de Bourgogne, Boite Postale 47870, F-21078 Dijon, France~Received 1 August 2000; published 4 April 2001!This article reports on the near-field optical response of a small square grating of gold nanoparticles tailoredby electron-beam lithography. The investigation of the grating is aimed at a deepened understanding ofelectromagnetic interaction among particles due to scattered light fields. Therefore, a photon scanning tunnel-ing microscope is applied to acquire near-field optical images. Two different incident wavelengths are used tocharacterize the intensity and the spatial localization of the electromagnetic near field both in and out…
Surface plasmon interference fringes in back-reflection
We report the experimental observation of surface plasmon polariton (SPP) interference fringes with near-unity visibility and half-wavelength periodicity obtained in back reflection on a Bragg mirror. The presented method based on leakage radiation microscopy (LRM) represents an alternative solution to optical near-field analysis and opens new ways for the quantitative analysis of SPP fringes. With LRM we investigate various SPP interference patterns and analyze the high reflectivity of Bragg mirror in comparison with theoretical models.
Analysis of the angular acceptance of surface plasmon Bragg mirrors
International audience; We analyze an important aspect of the behavior of surface plasmon polariton (SPP) Bragg mirrors: the dependence of the angular acceptance for reflection on the incidence angle. By means of leakage radiation microscopy, both in direct and Fourier space, we observe that the angular acceptance diminishes for increasing incidence angles. This effect, which can considerably affect the design of devices based on these elements, is shown to be the consequence of the decrease of the bandgap width with increasing incidence angle. (c) 2007 Optical Society of America.
Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors
The development of surface plasmon polariton (SPP) optical elements is mandatory in order to achieve surface plasmon based photonics. A current approach to reach this goal is to take advantage of the interaction of SPP with defects and design elements obtained by the micro- or nano-structuration of the metal film. In this work, we have performed a detailed study of the performance and behavior of SPP-Bragg mirrors, designed for 45\ifmmode^\circ\else\textdegree\fi{} incidence, based on this approach. Mirrors consisting of gratings of both metal ridges on the metal surface and grooves engraved in the metal, fabricated by means of electron beam lithography and focused ion beam, have been consi…
Plasmon polaritons of metallic nanowires for controlling submicron propagation of light
Laboratoire de Physique, Optique Submicronique, Universite´de Bourgogne, BP 47870, F-21078 Dijon, France~Received 29 April 1999!We use the Green dyadic technique to study the propagation of a local excitation along metallic nanowiresof a subwavelength cross section. The metallic nanowires are elongated parallelepipeds deposited on a trans-parent substrate. A tightly focused plane wave illuminates one end of the nanowires. The localized surface-plasmon resonances of the nanowires propagate the local excitations over distances larger than the incidentwavelength. The properties of the electromagnetic eigenmodes of the nanowires are analyzed in terms of thelocal density of states. @S0163-1829~9…
Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles
We report on the experimental observation of near-field optical effects close to Au nanoparticles using a photon scanning tunneling microscope (PSTM). Constant height operation of the PSTM allowed an unprecedented direct comparison with theoretical computations of the distribution of the optical near-field intensity. An unexpected squeezing of the optical near field due to plasmon coupling was observed above a chain of Au nanoparticles.
Efficient unidirectional nanoslit couplers for surface plasmons
5 pages, 4 figures.
Optical Near-Field Properties of Lithographically Designed Metallic Nanoparticles
ABSTRACTWe report on the experimental observation of localized surface plasmons sustained by small metallic particles using a photon scanning tunneling microscope (PSTM). The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. The constant height operation of the PSTM allowed a direct comparison with theoretical computations of the distribution of the optical near-field intensity. Plasmon coupling above a chain of Au particles and electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire are demonstrated. Our experimental results appear to be in good agreement with theoretical computations based on the Green's Dyadic Techniqu…
Near-field observation of surface plasmon polariton propagation on thin metal stripes
International audience; We use a photon scanning tunneling microscope to probe the field of surface plasmon polariton modes excited on finite-width thin metal films (metal stripes). We first investigate the coupling between surface plasmons launched by a focused beam on a homogeneous thin film and the modes sustained by metal stripes of different widths. We show that. if the width of the metal stripe is about a few micrometers, a strong coupling with the stripe modes can be achieved at visible frequencies. A sharp transverse confinement of the field associated with the surface plasmon modes propagating on the metal stripe is unambiguously observed on the constant height photon scanning tunn…
Surface plasmon polaritons in metal stripes and wires
Surface plasmon polaritons (SPPs) are collective electron oscillations coupled to a light field which are propagating along the interface of a metal and a dielectric. As a surface wave, SPP modes feature properties essentially different from light-field modes in all dielectric structures. These properties could allow the realization of novel photonic devices that overcome certain limitations of conventional devices. Specifically, the realization of two-dimensional optics and light-field transport in sub-wavelength SPP waveguides seems feasible. In this review we discuss recent experimental advances regarding SPP waveguides, i.e. laterally confined metal thin films that guide SPPs. Electron-…
Direct observation of localized surface plasmon coupling
We report on the direct observation of localized surface plasmon coupling using a photon scanning tunneling microscope. The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. Electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire, which is not directly excited by the incident light is observed. Our experimental results appear to be in good agreement with theoretical computations based on Green's dyadic technique.
Study of the angular acceptance of surface plasmon Bragg mirrors
Surface plasmon based photonic devices are promising candidates for highly integrated optics. A surface plasmon (SP) is basically an electromagnetic wave confined in the interface between a metal and a dielectric, and is due to the interaction of the electromagnetic field with the surface bounded electron charges in the metal. A SP can propagate along the interface where it is confined (the propagation length being tens of micrometers in the visible range), but its associated electromagnetic field decreases exponentially in the perpendicular direction, in such a way that this vertical confinement makes SP very attractive for the design of optical devices in coplanar geometry. An important e…
Light field propagation by metal micro- and nanostructures
The ability to sustain plasmon oscillations gives rise to unique properties of metal nanostructures, which can be exploited for the controlled manipulation of light fields on the nanoscale. In this context we investigate electromagnetic coupling effects within lithographically produced ensembles of gold nanoparticles with a photon scanning tunnelling microscope. To provide an interface between these nano-optical devices and classical far-field optics, we investigate surface plasmon propagation on microstructured metal thin films.
Physics of Near-Field Optical Images
Modulation of surface plasmon coupling-in by one-dimensional surface corrugation
Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been …
Optical absorption of torus-shaped metal nanoparticles in the visible range
Received 22 November 2007; published 19 December 2007We theoretically and experimentally investigated the optical response of a thin metal nanotorus in the visiblerange. The close formulas describing the extinction cross sections of a torus are obtained in the nonretardedapproximation. We demonstrate a good agreement between numerical simulations and experimental data. Ourfindings show that the main resonance is highly sensitive to the external medium and the geometrical param-eters of the particle.DOI: 10.1103/PhysRevB.76.245422 PACS number s : 78.67.Bf, 73.20.Mf, 78.20.Ci